{"title":"飞机发动机燃烧器新型涡流控制焰座初探","authors":"Yuling Zhao , Jiadong Zhang , Mingyu Li , Bei Yu","doi":"10.1016/j.ast.2024.109723","DOIUrl":null,"url":null,"abstract":"<div><div>This study proposes a novel vortex-controlled flameholder (VCF) to enhance the combustion performance, particularly the lean ignition and blowout characteristics of afterburners in advanced aircraft engines across a wide range of operating conditions. Additionally, both experimental and numerical investigations were conducted to explore the effects of the cavity structure on the flow field, lean ignition, lean blowout, flame propagation characteristics, and outlet temperature rise distribution of the flameholder. Two distinct cavity structures designated closed-cavity (case-1) and open-cavity (case-2) were examined, the findings indicating that both case-1 and case-2 can generate large-scale vortex flow structures within the cavity, contributing to achieving excellent combustion stability. Case-2 demonstrated better lean ignition and blowout performance compared to case-1. Furthermore, both case-1 and case-2 exhibited the same ignition process, which comprised four distinct phases: Phase 1 involved the formation of an effective flame kernel; Phase 2 pertained to the ignition of the entire cavity by the flame kernel; Phase 3 represented the full development of the flame downstream of the cavity; Phase 4 described the formation of a fire tornado that anchors the flame front. Interestingly, the outlet temperature rise in case-1 is lower than that in case-2 at low fuel-to-air ratio (FAR) conditions. As the FAR increases, the difference in the outlet temperature rises between the two cases gradually narrows.</div></div>","PeriodicalId":50955,"journal":{"name":"Aerospace Science and Technology","volume":"155 ","pages":"Article 109723"},"PeriodicalIF":5.0000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A preliminary investigation on a novel vortex-controlled flameholder for aircraft engine combustor\",\"authors\":\"Yuling Zhao , Jiadong Zhang , Mingyu Li , Bei Yu\",\"doi\":\"10.1016/j.ast.2024.109723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study proposes a novel vortex-controlled flameholder (VCF) to enhance the combustion performance, particularly the lean ignition and blowout characteristics of afterburners in advanced aircraft engines across a wide range of operating conditions. Additionally, both experimental and numerical investigations were conducted to explore the effects of the cavity structure on the flow field, lean ignition, lean blowout, flame propagation characteristics, and outlet temperature rise distribution of the flameholder. Two distinct cavity structures designated closed-cavity (case-1) and open-cavity (case-2) were examined, the findings indicating that both case-1 and case-2 can generate large-scale vortex flow structures within the cavity, contributing to achieving excellent combustion stability. Case-2 demonstrated better lean ignition and blowout performance compared to case-1. Furthermore, both case-1 and case-2 exhibited the same ignition process, which comprised four distinct phases: Phase 1 involved the formation of an effective flame kernel; Phase 2 pertained to the ignition of the entire cavity by the flame kernel; Phase 3 represented the full development of the flame downstream of the cavity; Phase 4 described the formation of a fire tornado that anchors the flame front. Interestingly, the outlet temperature rise in case-1 is lower than that in case-2 at low fuel-to-air ratio (FAR) conditions. As the FAR increases, the difference in the outlet temperature rises between the two cases gradually narrows.</div></div>\",\"PeriodicalId\":50955,\"journal\":{\"name\":\"Aerospace Science and Technology\",\"volume\":\"155 \",\"pages\":\"Article 109723\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aerospace Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1270963824008526\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aerospace Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1270963824008526","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
A preliminary investigation on a novel vortex-controlled flameholder for aircraft engine combustor
This study proposes a novel vortex-controlled flameholder (VCF) to enhance the combustion performance, particularly the lean ignition and blowout characteristics of afterburners in advanced aircraft engines across a wide range of operating conditions. Additionally, both experimental and numerical investigations were conducted to explore the effects of the cavity structure on the flow field, lean ignition, lean blowout, flame propagation characteristics, and outlet temperature rise distribution of the flameholder. Two distinct cavity structures designated closed-cavity (case-1) and open-cavity (case-2) were examined, the findings indicating that both case-1 and case-2 can generate large-scale vortex flow structures within the cavity, contributing to achieving excellent combustion stability. Case-2 demonstrated better lean ignition and blowout performance compared to case-1. Furthermore, both case-1 and case-2 exhibited the same ignition process, which comprised four distinct phases: Phase 1 involved the formation of an effective flame kernel; Phase 2 pertained to the ignition of the entire cavity by the flame kernel; Phase 3 represented the full development of the flame downstream of the cavity; Phase 4 described the formation of a fire tornado that anchors the flame front. Interestingly, the outlet temperature rise in case-1 is lower than that in case-2 at low fuel-to-air ratio (FAR) conditions. As the FAR increases, the difference in the outlet temperature rises between the two cases gradually narrows.
期刊介绍:
Aerospace Science and Technology publishes articles of outstanding scientific quality. Each article is reviewed by two referees. The journal welcomes papers from a wide range of countries. This journal publishes original papers, review articles and short communications related to all fields of aerospace research, fundamental and applied, potential applications of which are clearly related to:
• The design and the manufacture of aircraft, helicopters, missiles, launchers and satellites
• The control of their environment
• The study of various systems they are involved in, as supports or as targets.
Authors are invited to submit papers on new advances in the following topics to aerospace applications:
• Fluid dynamics
• Energetics and propulsion
• Materials and structures
• Flight mechanics
• Navigation, guidance and control
• Acoustics
• Optics
• Electromagnetism and radar
• Signal and image processing
• Information processing
• Data fusion
• Decision aid
• Human behaviour
• Robotics and intelligent systems
• Complex system engineering.
Etc.