RUCova:去除质量细胞测量数据中不必要的协方差。

Rosario Astaburuaga-García, Thomas Sell, Samet Mutlu, Anja Sieber, Kirsten Lauber, Nils Blüthgen
{"title":"RUCova:去除质量细胞测量数据中不必要的协方差。","authors":"Rosario Astaburuaga-García, Thomas Sell, Samet Mutlu, Anja Sieber, Kirsten Lauber, Nils Blüthgen","doi":"10.1093/bioinformatics/btae669","DOIUrl":null,"url":null,"abstract":"<p><strong>Motivation: </strong>High dimensional single-cell mass cytometry data are confounded by unwanted covariance due to variations in cell size and staining efficiency, making analysis and interpretation challenging.</p><p><strong>Results: </strong>We present RUCova, a novel method designed to address confounding factors in mass cytometry data. RUCova removes unwanted covariance from measured markers applying multivariate linear regression based on Surrogates of sources Unwanted Covariance (SUCs) and principal component analysis (PCA). We exemplify the use of RUCova and show that it effectively removes unwanted covariance while preserving genuine biological signals. Our results demonstrate the efficacy of RUCova in elucidating complex data patterns, facilitating the identification of activated signalling pathways, and improving the classification of important cell populations such as apoptotic cells. By providing a robust framework for data normalization and interpretation, RUCova enhances the accuracy and reliability of mass cytometry analyses, contributing to advances in our understanding of cellular biology and disease mechanisms.</p><p><strong>Availability and implementation: </strong>The R package is available on https://github.com/molsysbio/RUCova. Detailed documentation, data, and the code required to reproduce the results are available on https://doi.org/10.5281/zenodo.10913464.</p><p><strong>Supplementary information: </strong>Available at Bioinformatics online (PDF).</p>","PeriodicalId":93899,"journal":{"name":"Bioinformatics (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RUCova: Removal of Unwanted Covariance in mass cytometry data.\",\"authors\":\"Rosario Astaburuaga-García, Thomas Sell, Samet Mutlu, Anja Sieber, Kirsten Lauber, Nils Blüthgen\",\"doi\":\"10.1093/bioinformatics/btae669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Motivation: </strong>High dimensional single-cell mass cytometry data are confounded by unwanted covariance due to variations in cell size and staining efficiency, making analysis and interpretation challenging.</p><p><strong>Results: </strong>We present RUCova, a novel method designed to address confounding factors in mass cytometry data. RUCova removes unwanted covariance from measured markers applying multivariate linear regression based on Surrogates of sources Unwanted Covariance (SUCs) and principal component analysis (PCA). We exemplify the use of RUCova and show that it effectively removes unwanted covariance while preserving genuine biological signals. Our results demonstrate the efficacy of RUCova in elucidating complex data patterns, facilitating the identification of activated signalling pathways, and improving the classification of important cell populations such as apoptotic cells. By providing a robust framework for data normalization and interpretation, RUCova enhances the accuracy and reliability of mass cytometry analyses, contributing to advances in our understanding of cellular biology and disease mechanisms.</p><p><strong>Availability and implementation: </strong>The R package is available on https://github.com/molsysbio/RUCova. Detailed documentation, data, and the code required to reproduce the results are available on https://doi.org/10.5281/zenodo.10913464.</p><p><strong>Supplementary information: </strong>Available at Bioinformatics online (PDF).</p>\",\"PeriodicalId\":93899,\"journal\":{\"name\":\"Bioinformatics (Oxford, England)\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinformatics (Oxford, England)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/bioinformatics/btae669\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinformatics (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/bioinformatics/btae669","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动因:由于细胞大小和染色效率的变化,高维单细胞质量细胞测量数据会受到不必要的协方差的干扰,从而使分析和解释变得具有挑战性:结果:我们介绍了 RUCova,这是一种新颖的方法,旨在解决质量细胞测量数据中的干扰因素。RUCova 采用基于无用协方差来源替代物(SUC)和主成分分析(PCA)的多元线性回归,去除测量标记物的无用协方差。我们举例说明了 RUCova 的使用,并证明它能有效去除不必要的协方差,同时保留真正的生物信号。我们的研究结果表明,RUCova 能有效阐明复杂的数据模式,促进激活信号通路的识别,并改进重要细胞群(如凋亡细胞)的分类。RUCova 为数据归一化和解释提供了一个强大的框架,从而提高了质谱分析的准确性和可靠性,有助于加深我们对细胞生物学和疾病机制的理解:R软件包可在https://github.com/molsysbio/RUCova。详细的文档、数据和重现结果所需的代码可从 https://doi.org/10.5281/zenodo.10913464.Supplementary 信息中获取:可在 Bioinformatics 在线查阅(PDF)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
RUCova: Removal of Unwanted Covariance in mass cytometry data.

Motivation: High dimensional single-cell mass cytometry data are confounded by unwanted covariance due to variations in cell size and staining efficiency, making analysis and interpretation challenging.

Results: We present RUCova, a novel method designed to address confounding factors in mass cytometry data. RUCova removes unwanted covariance from measured markers applying multivariate linear regression based on Surrogates of sources Unwanted Covariance (SUCs) and principal component analysis (PCA). We exemplify the use of RUCova and show that it effectively removes unwanted covariance while preserving genuine biological signals. Our results demonstrate the efficacy of RUCova in elucidating complex data patterns, facilitating the identification of activated signalling pathways, and improving the classification of important cell populations such as apoptotic cells. By providing a robust framework for data normalization and interpretation, RUCova enhances the accuracy and reliability of mass cytometry analyses, contributing to advances in our understanding of cellular biology and disease mechanisms.

Availability and implementation: The R package is available on https://github.com/molsysbio/RUCova. Detailed documentation, data, and the code required to reproduce the results are available on https://doi.org/10.5281/zenodo.10913464.

Supplementary information: Available at Bioinformatics online (PDF).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信