Muhammad Imran , Jonathan R. Krebs , Veera Rajasekhar Reddy Gopu , Brian Fazzone , Vishal Balaji Sivaraman , Amarjeet Kumar , Chelsea Viscardi , Robert Evans Heithaus , Benjamin Shickel , Yuyin Zhou , Michol A. Cooper , Wei Shao
{"title":"CIS-UNet:通过上下文感知移动窗口自我关注,在计算机断层扫描血管造影中对主动脉进行多类分割。","authors":"Muhammad Imran , Jonathan R. Krebs , Veera Rajasekhar Reddy Gopu , Brian Fazzone , Vishal Balaji Sivaraman , Amarjeet Kumar , Chelsea Viscardi , Robert Evans Heithaus , Benjamin Shickel , Yuyin Zhou , Michol A. Cooper , Wei Shao","doi":"10.1016/j.compmedimag.2024.102470","DOIUrl":null,"url":null,"abstract":"<div><div>Advancements in medical imaging and endovascular grafting have facilitated minimally invasive treatments for aortic diseases. Accurate 3D segmentation of the aorta and its branches is crucial for interventions, as inaccurate segmentation can lead to erroneous surgical planning and endograft construction. Previous methods simplified aortic segmentation as a binary image segmentation problem, overlooking the necessity of distinguishing between individual aortic branches. In this paper, we introduce Context-Infused Swin-UNet (CIS-UNet), a deep learning model designed for multi-class segmentation of the aorta and thirteen aortic branches. Combining the strengths of Convolutional Neural Networks (CNNs) and Swin transformers, CIS-UNet adopts a hierarchical encoder–decoder structure comprising a CNN encoder, a symmetric decoder, skip connections, and a novel Context-aware Shifted Window Self-Attention (CSW-SA) module as the bottleneck block. Notably, CSW-SA introduces a unique adaptation of the patch merging layer, distinct from its traditional use in the Swin transformers. CSW-SA efficiently condenses the feature map, providing a global spatial context, and enhances performance when applied at the bottleneck layer, offering superior computational efficiency and segmentation accuracy compared to the Swin transformers. We evaluated our model on computed tomography (CT) scans from 59 patients through a 4-fold cross-validation. CIS-UNet outperformed the state-of-the-art Swin UNetR segmentation model by achieving a superior mean Dice coefficient of 0.732 compared to 0.717 and a mean surface distance of 2.40 mm compared to 2.75 mm. CIS-UNet’s superior 3D aortic segmentation offers improved accuracy and optimization for planning endovascular treatments. Our dataset and code will be made publicly available at <span><span>https://github.com/mirthAI/CIS-UNet</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":50631,"journal":{"name":"Computerized Medical Imaging and Graphics","volume":"118 ","pages":"Article 102470"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CIS-UNet: Multi-class segmentation of the aorta in computed tomography angiography via context-aware shifted window self-attention\",\"authors\":\"Muhammad Imran , Jonathan R. Krebs , Veera Rajasekhar Reddy Gopu , Brian Fazzone , Vishal Balaji Sivaraman , Amarjeet Kumar , Chelsea Viscardi , Robert Evans Heithaus , Benjamin Shickel , Yuyin Zhou , Michol A. Cooper , Wei Shao\",\"doi\":\"10.1016/j.compmedimag.2024.102470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Advancements in medical imaging and endovascular grafting have facilitated minimally invasive treatments for aortic diseases. Accurate 3D segmentation of the aorta and its branches is crucial for interventions, as inaccurate segmentation can lead to erroneous surgical planning and endograft construction. Previous methods simplified aortic segmentation as a binary image segmentation problem, overlooking the necessity of distinguishing between individual aortic branches. In this paper, we introduce Context-Infused Swin-UNet (CIS-UNet), a deep learning model designed for multi-class segmentation of the aorta and thirteen aortic branches. Combining the strengths of Convolutional Neural Networks (CNNs) and Swin transformers, CIS-UNet adopts a hierarchical encoder–decoder structure comprising a CNN encoder, a symmetric decoder, skip connections, and a novel Context-aware Shifted Window Self-Attention (CSW-SA) module as the bottleneck block. Notably, CSW-SA introduces a unique adaptation of the patch merging layer, distinct from its traditional use in the Swin transformers. CSW-SA efficiently condenses the feature map, providing a global spatial context, and enhances performance when applied at the bottleneck layer, offering superior computational efficiency and segmentation accuracy compared to the Swin transformers. We evaluated our model on computed tomography (CT) scans from 59 patients through a 4-fold cross-validation. CIS-UNet outperformed the state-of-the-art Swin UNetR segmentation model by achieving a superior mean Dice coefficient of 0.732 compared to 0.717 and a mean surface distance of 2.40 mm compared to 2.75 mm. CIS-UNet’s superior 3D aortic segmentation offers improved accuracy and optimization for planning endovascular treatments. Our dataset and code will be made publicly available at <span><span>https://github.com/mirthAI/CIS-UNet</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":50631,\"journal\":{\"name\":\"Computerized Medical Imaging and Graphics\",\"volume\":\"118 \",\"pages\":\"Article 102470\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computerized Medical Imaging and Graphics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0895611124001472\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computerized Medical Imaging and Graphics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0895611124001472","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
CIS-UNet: Multi-class segmentation of the aorta in computed tomography angiography via context-aware shifted window self-attention
Advancements in medical imaging and endovascular grafting have facilitated minimally invasive treatments for aortic diseases. Accurate 3D segmentation of the aorta and its branches is crucial for interventions, as inaccurate segmentation can lead to erroneous surgical planning and endograft construction. Previous methods simplified aortic segmentation as a binary image segmentation problem, overlooking the necessity of distinguishing between individual aortic branches. In this paper, we introduce Context-Infused Swin-UNet (CIS-UNet), a deep learning model designed for multi-class segmentation of the aorta and thirteen aortic branches. Combining the strengths of Convolutional Neural Networks (CNNs) and Swin transformers, CIS-UNet adopts a hierarchical encoder–decoder structure comprising a CNN encoder, a symmetric decoder, skip connections, and a novel Context-aware Shifted Window Self-Attention (CSW-SA) module as the bottleneck block. Notably, CSW-SA introduces a unique adaptation of the patch merging layer, distinct from its traditional use in the Swin transformers. CSW-SA efficiently condenses the feature map, providing a global spatial context, and enhances performance when applied at the bottleneck layer, offering superior computational efficiency and segmentation accuracy compared to the Swin transformers. We evaluated our model on computed tomography (CT) scans from 59 patients through a 4-fold cross-validation. CIS-UNet outperformed the state-of-the-art Swin UNetR segmentation model by achieving a superior mean Dice coefficient of 0.732 compared to 0.717 and a mean surface distance of 2.40 mm compared to 2.75 mm. CIS-UNet’s superior 3D aortic segmentation offers improved accuracy and optimization for planning endovascular treatments. Our dataset and code will be made publicly available at https://github.com/mirthAI/CIS-UNet.
期刊介绍:
The purpose of the journal Computerized Medical Imaging and Graphics is to act as a source for the exchange of research results concerning algorithmic advances, development, and application of digital imaging in disease detection, diagnosis, intervention, prevention, precision medicine, and population health. Included in the journal will be articles on novel computerized imaging or visualization techniques, including artificial intelligence and machine learning, augmented reality for surgical planning and guidance, big biomedical data visualization, computer-aided diagnosis, computerized-robotic surgery, image-guided therapy, imaging scanning and reconstruction, mobile and tele-imaging, radiomics, and imaging integration and modeling with other information relevant to digital health. The types of biomedical imaging include: magnetic resonance, computed tomography, ultrasound, nuclear medicine, X-ray, microwave, optical and multi-photon microscopy, video and sensory imaging, and the convergence of biomedical images with other non-imaging datasets.