Catherine C Rouch, Arnab K Chatterjee, Connor McCarty, Lirui Song, Alan Chu, Kristen Johnson, Mina Heacock, Laura Riva, Case W McNamara, Karen C Wolff, Rebecca Greene-Cramer, Anna De Falco, Gaetano T Montelione, Gennadii A Grabovyi
{"title":"具有抗病毒效力的 SARS-CoV-2 木瓜蛋白酶类共价抑制剂的合成及结构-活性关系。","authors":"Catherine C Rouch, Arnab K Chatterjee, Connor McCarty, Lirui Song, Alan Chu, Kristen Johnson, Mina Heacock, Laura Riva, Case W McNamara, Karen C Wolff, Rebecca Greene-Cramer, Anna De Falco, Gaetano T Montelione, Gennadii A Grabovyi","doi":"10.1016/j.bmcl.2024.130034","DOIUrl":null,"url":null,"abstract":"<p><p>The papain-like protease (PLpro) is a highly conserved domain encoded by the coronavirus (CoV) genome and it plays an essential role in the replication and maturation of the virus in addition to weakening host immune response. Due to the virus's reliance on PLpro for survival and propagation, small-molecule inhibitors of PLpro serve as an attractive model for direct-acting antiviral therapeutic agents against SARS-CoV-2. Building upon existing work aimed at designing covalent inhibitors against PLpro, we report the synthesis and structure-activity relationship of analogs based on the known covalent inhibitor 1 (Sanders, et al.2023). To evaluate the efficacy of synthesized derivatives, we conducted enzymatic inhibition assays, SARS-CoV-2/HeLa-ACE2 cellular potency and toxicity assays, and profiled the most promising analogs via in vitro ADME and in vivo pharmacokinetic studies. Additionally, we describe computational docking of profiled compounds bound to PLpro to elucidate the structure-activity relationship of compounds based on 1 and offer suggestions for optimizing the potency and selectivity of the electrophilic warhead and improving ADME and PK properties for this chemotype. Relative to the parent compound, new designs demonstrate comparable potency and target selectivity for PLpro. The accomplished SAR campaign provides novel insight for future development of antivirals against SARS-CoV-2.</p>","PeriodicalId":256,"journal":{"name":"Bioorganic & Medicinal Chemistry Letters","volume":" ","pages":"130034"},"PeriodicalIF":2.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Structure-Activity Relationship of Covalent Inhibitors of SARS-CoV-2 Papain-Like Protease with Antiviral Potency.\",\"authors\":\"Catherine C Rouch, Arnab K Chatterjee, Connor McCarty, Lirui Song, Alan Chu, Kristen Johnson, Mina Heacock, Laura Riva, Case W McNamara, Karen C Wolff, Rebecca Greene-Cramer, Anna De Falco, Gaetano T Montelione, Gennadii A Grabovyi\",\"doi\":\"10.1016/j.bmcl.2024.130034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The papain-like protease (PLpro) is a highly conserved domain encoded by the coronavirus (CoV) genome and it plays an essential role in the replication and maturation of the virus in addition to weakening host immune response. Due to the virus's reliance on PLpro for survival and propagation, small-molecule inhibitors of PLpro serve as an attractive model for direct-acting antiviral therapeutic agents against SARS-CoV-2. Building upon existing work aimed at designing covalent inhibitors against PLpro, we report the synthesis and structure-activity relationship of analogs based on the known covalent inhibitor 1 (Sanders, et al.2023). To evaluate the efficacy of synthesized derivatives, we conducted enzymatic inhibition assays, SARS-CoV-2/HeLa-ACE2 cellular potency and toxicity assays, and profiled the most promising analogs via in vitro ADME and in vivo pharmacokinetic studies. Additionally, we describe computational docking of profiled compounds bound to PLpro to elucidate the structure-activity relationship of compounds based on 1 and offer suggestions for optimizing the potency and selectivity of the electrophilic warhead and improving ADME and PK properties for this chemotype. Relative to the parent compound, new designs demonstrate comparable potency and target selectivity for PLpro. The accomplished SAR campaign provides novel insight for future development of antivirals against SARS-CoV-2.</p>\",\"PeriodicalId\":256,\"journal\":{\"name\":\"Bioorganic & Medicinal Chemistry Letters\",\"volume\":\" \",\"pages\":\"130034\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioorganic & Medicinal Chemistry Letters\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.bmcl.2024.130034\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry Letters","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.bmcl.2024.130034","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/21 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Synthesis and Structure-Activity Relationship of Covalent Inhibitors of SARS-CoV-2 Papain-Like Protease with Antiviral Potency.
The papain-like protease (PLpro) is a highly conserved domain encoded by the coronavirus (CoV) genome and it plays an essential role in the replication and maturation of the virus in addition to weakening host immune response. Due to the virus's reliance on PLpro for survival and propagation, small-molecule inhibitors of PLpro serve as an attractive model for direct-acting antiviral therapeutic agents against SARS-CoV-2. Building upon existing work aimed at designing covalent inhibitors against PLpro, we report the synthesis and structure-activity relationship of analogs based on the known covalent inhibitor 1 (Sanders, et al.2023). To evaluate the efficacy of synthesized derivatives, we conducted enzymatic inhibition assays, SARS-CoV-2/HeLa-ACE2 cellular potency and toxicity assays, and profiled the most promising analogs via in vitro ADME and in vivo pharmacokinetic studies. Additionally, we describe computational docking of profiled compounds bound to PLpro to elucidate the structure-activity relationship of compounds based on 1 and offer suggestions for optimizing the potency and selectivity of the electrophilic warhead and improving ADME and PK properties for this chemotype. Relative to the parent compound, new designs demonstrate comparable potency and target selectivity for PLpro. The accomplished SAR campaign provides novel insight for future development of antivirals against SARS-CoV-2.
期刊介绍:
Bioorganic & Medicinal Chemistry Letters presents preliminary experimental or theoretical research results of outstanding significance and timeliness on all aspects of science at the interface of chemistry and biology and on major advances in drug design and development. The journal publishes articles in the form of communications reporting experimental or theoretical results of special interest, and strives to provide maximum dissemination to a large, international audience.