通过各向异性间隙表征双向纠缠

IF 2.2 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL
Xue Yang, Mir Alimuddin, Yan-Han Yang, Ming-Xing Luo
{"title":"通过各向异性间隙表征双向纠缠","authors":"Xue Yang,&nbsp;Mir Alimuddin,&nbsp;Yan-Han Yang,&nbsp;Ming-Xing Luo","doi":"10.1007/s11128-024-04599-0","DOIUrl":null,"url":null,"abstract":"<div><p>The existence of quantum entanglement implies a non-vanishing thermodynamic quantity termed an ergotropic gap (EG). Our goal in this work is to characterize entanglement from the perspective of the ergotropic gap. We firstly define the passive-state energy of the marginals as an entanglement monotone named EG entanglement, additionally, we derive an analytical formula for two-qubit entangled systems. Another interesting result is the monogamy relation for the EG entanglement, which indicates that the shareability of bipartite entanglement in multipartite entangled systems is bounded by the amount of entanglement. Finally, we show that a necessary condition for an <i>n</i>-qubit pure state is that all marginal EG entanglements should satisfy polygon inequalities. These results reveal a new understanding of entanglement from the view of thermodynamics.</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"23 12","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizing bipartite entanglement via the ergotropic gap\",\"authors\":\"Xue Yang,&nbsp;Mir Alimuddin,&nbsp;Yan-Han Yang,&nbsp;Ming-Xing Luo\",\"doi\":\"10.1007/s11128-024-04599-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The existence of quantum entanglement implies a non-vanishing thermodynamic quantity termed an ergotropic gap (EG). Our goal in this work is to characterize entanglement from the perspective of the ergotropic gap. We firstly define the passive-state energy of the marginals as an entanglement monotone named EG entanglement, additionally, we derive an analytical formula for two-qubit entangled systems. Another interesting result is the monogamy relation for the EG entanglement, which indicates that the shareability of bipartite entanglement in multipartite entangled systems is bounded by the amount of entanglement. Finally, we show that a necessary condition for an <i>n</i>-qubit pure state is that all marginal EG entanglements should satisfy polygon inequalities. These results reveal a new understanding of entanglement from the view of thermodynamics.</p></div>\",\"PeriodicalId\":746,\"journal\":{\"name\":\"Quantum Information Processing\",\"volume\":\"23 12\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Information Processing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11128-024-04599-0\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-024-04599-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

量子纠缠的存在意味着一个不等的热力学量,称为 "各向异性间隙"(EG)。我们在这项工作中的目标是从各向异性间隙的角度来描述纠缠。我们首先将边际的被动态能量定义为纠缠单调,命名为 EG 纠缠,此外,我们还推导出了双量子比特纠缠系统的解析公式。另一个有趣的结果是 EG纠缠的单调关系,它表明多方纠缠系统中双方纠缠的共享性受纠缠量的约束。最后,我们证明了 n 量子位纯态的一个必要条件是所有边际 EG 纠缠都应满足多边形不等式。这些结果从热力学的角度揭示了对纠缠的新理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizing bipartite entanglement via the ergotropic gap

The existence of quantum entanglement implies a non-vanishing thermodynamic quantity termed an ergotropic gap (EG). Our goal in this work is to characterize entanglement from the perspective of the ergotropic gap. We firstly define the passive-state energy of the marginals as an entanglement monotone named EG entanglement, additionally, we derive an analytical formula for two-qubit entangled systems. Another interesting result is the monogamy relation for the EG entanglement, which indicates that the shareability of bipartite entanglement in multipartite entangled systems is bounded by the amount of entanglement. Finally, we show that a necessary condition for an n-qubit pure state is that all marginal EG entanglements should satisfy polygon inequalities. These results reveal a new understanding of entanglement from the view of thermodynamics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Information Processing
Quantum Information Processing 物理-物理:数学物理
CiteScore
4.10
自引率
20.00%
发文量
337
审稿时长
4.5 months
期刊介绍: Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信