{"title":"具有可变指数的加权贝索夫空间的特征","authors":"Sheng Rong Wang, Peng Fei Guo, Jing Shi Xu","doi":"10.1007/s10114-024-2623-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we first give characterizations of weighted Besov spaces with variable exponents via Peetre’s maximal functions. Then we obtain decomposition characterizations of these spaces by atom, molecule and wavelet. As an application, we obtain the boundedness of the pseudo-differential operators on these spaces.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"40 11","pages":"2855 - 2878"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizations of Weighted Besov Spaces with Variable Exponents\",\"authors\":\"Sheng Rong Wang, Peng Fei Guo, Jing Shi Xu\",\"doi\":\"10.1007/s10114-024-2623-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we first give characterizations of weighted Besov spaces with variable exponents via Peetre’s maximal functions. Then we obtain decomposition characterizations of these spaces by atom, molecule and wavelet. As an application, we obtain the boundedness of the pseudo-differential operators on these spaces.</p></div>\",\"PeriodicalId\":50893,\"journal\":{\"name\":\"Acta Mathematica Sinica-English Series\",\"volume\":\"40 11\",\"pages\":\"2855 - 2878\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Sinica-English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-024-2623-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-024-2623-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Characterizations of Weighted Besov Spaces with Variable Exponents
In this paper, we first give characterizations of weighted Besov spaces with variable exponents via Peetre’s maximal functions. Then we obtain decomposition characterizations of these spaces by atom, molecule and wavelet. As an application, we obtain the boundedness of the pseudo-differential operators on these spaces.
期刊介绍:
Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.