具有可变指数的加权贝索夫空间的特征

IF 0.8 3区 数学 Q2 MATHEMATICS
Sheng Rong Wang, Peng Fei Guo, Jing Shi Xu
{"title":"具有可变指数的加权贝索夫空间的特征","authors":"Sheng Rong Wang,&nbsp;Peng Fei Guo,&nbsp;Jing Shi Xu","doi":"10.1007/s10114-024-2623-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we first give characterizations of weighted Besov spaces with variable exponents via Peetre’s maximal functions. Then we obtain decomposition characterizations of these spaces by atom, molecule and wavelet. As an application, we obtain the boundedness of the pseudo-differential operators on these spaces.</p></div>","PeriodicalId":50893,"journal":{"name":"Acta Mathematica Sinica-English Series","volume":"40 11","pages":"2855 - 2878"},"PeriodicalIF":0.8000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizations of Weighted Besov Spaces with Variable Exponents\",\"authors\":\"Sheng Rong Wang,&nbsp;Peng Fei Guo,&nbsp;Jing Shi Xu\",\"doi\":\"10.1007/s10114-024-2623-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we first give characterizations of weighted Besov spaces with variable exponents via Peetre’s maximal functions. Then we obtain decomposition characterizations of these spaces by atom, molecule and wavelet. As an application, we obtain the boundedness of the pseudo-differential operators on these spaces.</p></div>\",\"PeriodicalId\":50893,\"journal\":{\"name\":\"Acta Mathematica Sinica-English Series\",\"volume\":\"40 11\",\"pages\":\"2855 - 2878\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica Sinica-English Series\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-024-2623-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica Sinica-English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-024-2623-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们首先通过 Peetre 的最大函数给出了具有可变指数的加权 Besov 空间的特征。然后,我们通过原子、分子和小波得到这些空间的分解特征。作为应用,我们得到了这些空间上伪微分算子的有界性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizations of Weighted Besov Spaces with Variable Exponents

In this paper, we first give characterizations of weighted Besov spaces with variable exponents via Peetre’s maximal functions. Then we obtain decomposition characterizations of these spaces by atom, molecule and wavelet. As an application, we obtain the boundedness of the pseudo-differential operators on these spaces.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
0.00%
发文量
138
审稿时长
14.5 months
期刊介绍: Acta Mathematica Sinica, established by the Chinese Mathematical Society in 1936, is the first and the best mathematical journal in China. In 1985, Acta Mathematica Sinica is divided into English Series and Chinese Series. The English Series is a monthly journal, publishing significant research papers from all branches of pure and applied mathematics. It provides authoritative reviews of current developments in mathematical research. Contributions are invited from researchers from all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信