通过内部扩散屏障减少过氧化物太阳能电池在真空层压过程中的热降解

IF 5.5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Robert Witteck*, Duong Nguyen Minh, Goutam Paul, Steven P. Harvey, Xiaopeng Zheng, Qi Jiang, Min Chen, Tobias Abzieher, Axel F. Palmstrom, Brian Habersberger, E. Ashley Gaulding, Joseph M. Luther and Lance M. Wheeler*, 
{"title":"通过内部扩散屏障减少过氧化物太阳能电池在真空层压过程中的热降解","authors":"Robert Witteck*,&nbsp;Duong Nguyen Minh,&nbsp;Goutam Paul,&nbsp;Steven P. Harvey,&nbsp;Xiaopeng Zheng,&nbsp;Qi Jiang,&nbsp;Min Chen,&nbsp;Tobias Abzieher,&nbsp;Axel F. Palmstrom,&nbsp;Brian Habersberger,&nbsp;E. Ashley Gaulding,&nbsp;Joseph M. Luther and Lance M. Wheeler*,&nbsp;","doi":"10.1021/acsaem.4c0256710.1021/acsaem.4c02567","DOIUrl":null,"url":null,"abstract":"<p >Current photovoltaic (PV) panels typically contain interconnected solar cells that are vacuum laminated with a polymer encapsulant between two pieces of glass or glass with a polymer backsheet. This packaging approach is ubiquitous in conventional photovoltaic technologies such as silicon and thin-film solar modules, contributing to thermal management, mechanical reinforcement, and environmental protection to enable the long lifetimes necessary to become financially acceptable. Commercial vacuum lamination processes typically occur at 150 °C to ensure cross-linking and/or glass bonding of the encapsulant to the glass and PV cells. Perovskite solar cells (PSCs) have emerged as a promising next-generation PV technology that is known to degrade under thermal stresses, especially at temperatures above 100 °C. In this study, we determine degradation modes during lamination and engineer internal diffusion barriers within the PSC to withstand the harsh thermal conditions of vacuum lamination. PSCs with self-assembled monolayers at the ITO interface and SnO<sub><i>X</i></sub> layers deposited by atomic layer deposition at the electron extraction side of the device endured vacuum lamination at conditions typical of commercial PV processes (150 °C) without degradation. This work demonstrates that perovskite PV can be integrated into the existing module lamination process, enabling future single- and multijunction modules utilizing perovskite absorbers.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":"7 22","pages":"10750–10757 10750–10757"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsaem.4c02567","citationCount":"0","resultStr":"{\"title\":\"Reducing Thermal Degradation of Perovskite Solar Cells during Vacuum Lamination by Internal Diffusion Barriers\",\"authors\":\"Robert Witteck*,&nbsp;Duong Nguyen Minh,&nbsp;Goutam Paul,&nbsp;Steven P. Harvey,&nbsp;Xiaopeng Zheng,&nbsp;Qi Jiang,&nbsp;Min Chen,&nbsp;Tobias Abzieher,&nbsp;Axel F. Palmstrom,&nbsp;Brian Habersberger,&nbsp;E. Ashley Gaulding,&nbsp;Joseph M. Luther and Lance M. Wheeler*,&nbsp;\",\"doi\":\"10.1021/acsaem.4c0256710.1021/acsaem.4c02567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Current photovoltaic (PV) panels typically contain interconnected solar cells that are vacuum laminated with a polymer encapsulant between two pieces of glass or glass with a polymer backsheet. This packaging approach is ubiquitous in conventional photovoltaic technologies such as silicon and thin-film solar modules, contributing to thermal management, mechanical reinforcement, and environmental protection to enable the long lifetimes necessary to become financially acceptable. Commercial vacuum lamination processes typically occur at 150 °C to ensure cross-linking and/or glass bonding of the encapsulant to the glass and PV cells. Perovskite solar cells (PSCs) have emerged as a promising next-generation PV technology that is known to degrade under thermal stresses, especially at temperatures above 100 °C. In this study, we determine degradation modes during lamination and engineer internal diffusion barriers within the PSC to withstand the harsh thermal conditions of vacuum lamination. PSCs with self-assembled monolayers at the ITO interface and SnO<sub><i>X</i></sub> layers deposited by atomic layer deposition at the electron extraction side of the device endured vacuum lamination at conditions typical of commercial PV processes (150 °C) without degradation. This work demonstrates that perovskite PV can be integrated into the existing module lamination process, enabling future single- and multijunction modules utilizing perovskite absorbers.</p>\",\"PeriodicalId\":4,\"journal\":{\"name\":\"ACS Applied Energy Materials\",\"volume\":\"7 22\",\"pages\":\"10750–10757 10750–10757\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/acsaem.4c02567\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Energy Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsaem.4c02567\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsaem.4c02567","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

目前的光伏(PV)电池板通常包含相互连接的太阳能电池,这些电池是用聚合物封装剂真空层压在两片玻璃之间或玻璃与聚合物背板之间。这种封装方法在硅和薄膜太阳能模块等传统光伏技术中普遍存在,有助于热管理、机械加固和环境保护,从而实现必要的长寿命,在经济上可以接受。商用真空层压工艺通常在 150 °C 下进行,以确保封装剂与玻璃和光伏电池的交联和/或玻璃粘合。众所周知,在热应力作用下,特别是在温度超过 100 °C 时,光伏电池会发生降解。在本研究中,我们确定了层压过程中的降解模式,并在 PSC 中设计了内部扩散屏障,以承受真空层压的苛刻热条件。在 ITO 界面具有自组装单层、在器件的电子萃取侧通过原子层沉积沉积了 SnOX 层的 PSC 在商用光伏工艺的典型条件下(150 °C)经受住了真空层压,没有发生降解。这项工作表明,透辉石光伏可以集成到现有的模块层压工艺中,使未来利用透辉石吸收器的单结和多结模块成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reducing Thermal Degradation of Perovskite Solar Cells during Vacuum Lamination by Internal Diffusion Barriers

Current photovoltaic (PV) panels typically contain interconnected solar cells that are vacuum laminated with a polymer encapsulant between two pieces of glass or glass with a polymer backsheet. This packaging approach is ubiquitous in conventional photovoltaic technologies such as silicon and thin-film solar modules, contributing to thermal management, mechanical reinforcement, and environmental protection to enable the long lifetimes necessary to become financially acceptable. Commercial vacuum lamination processes typically occur at 150 °C to ensure cross-linking and/or glass bonding of the encapsulant to the glass and PV cells. Perovskite solar cells (PSCs) have emerged as a promising next-generation PV technology that is known to degrade under thermal stresses, especially at temperatures above 100 °C. In this study, we determine degradation modes during lamination and engineer internal diffusion barriers within the PSC to withstand the harsh thermal conditions of vacuum lamination. PSCs with self-assembled monolayers at the ITO interface and SnOX layers deposited by atomic layer deposition at the electron extraction side of the device endured vacuum lamination at conditions typical of commercial PV processes (150 °C) without degradation. This work demonstrates that perovskite PV can be integrated into the existing module lamination process, enabling future single- and multijunction modules utilizing perovskite absorbers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信