{"title":"不同水体双面漂浮独立光伏系统的性能评估:10E 分析实验研究","authors":"Ganesan Rathinavel Pandian, Gurukarthik Babu Balachandran, Prince Winston David, Hariharasudhan Thangaraj","doi":"10.1002/ep.14487","DOIUrl":null,"url":null,"abstract":"<p>This study delves into harnessing solar energy potential through innovative floating bifacial solar power generation systems. Employing a comprehensive 10E analysis—encompassing Energy, Exergy, Economic, Environmental, Energo-economic, Exergo-economic, Enviro-economic, Energo-environmental, Exergo-environmental, Energy Payback Time, and Embodied Energy factors—the research evaluates energy performance, economic viability, and environmental impact. Among coolants, fresh water exhibited optimal performance, with peak output power (399 W), final yield (371.9351 W), and performance ratio (59.08173655). Capacity utilization factors were comparable (~0.516), with fresh water (0.5165764992) and black water (0.5154933033) excelling. Fresh water also minimized energy loss (−365.639816266105). Exergy efficiency peaked with fresh water (32.10%). Energo-economic Analysis indicated lower LCOE (3.39 $/MWh) and higher enviro-economic parameter (243.4965981) for Fresh Water. Exergo-environmental Analysis showed consistent efficiency across conditions (exergy performance time [EPT]: 37.28410450–37.35602872). The Embodied Energy for panels was 2840.67 kWh/kg. Freshwater emerges as the frontrunner, offering high energy efficiency, minimized energy loss, and environmental sustainability. Embracing freshwater coolant opens avenues for inventive and environmentally conscious solar energy solutions in buoyant applications.</p>","PeriodicalId":11701,"journal":{"name":"Environmental Progress & Sustainable Energy","volume":"43 6","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance evaluation of a bifacial floating standalone photovoltaic system with different water bodies: An experimental investigation of 10E analysis\",\"authors\":\"Ganesan Rathinavel Pandian, Gurukarthik Babu Balachandran, Prince Winston David, Hariharasudhan Thangaraj\",\"doi\":\"10.1002/ep.14487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study delves into harnessing solar energy potential through innovative floating bifacial solar power generation systems. Employing a comprehensive 10E analysis—encompassing Energy, Exergy, Economic, Environmental, Energo-economic, Exergo-economic, Enviro-economic, Energo-environmental, Exergo-environmental, Energy Payback Time, and Embodied Energy factors—the research evaluates energy performance, economic viability, and environmental impact. Among coolants, fresh water exhibited optimal performance, with peak output power (399 W), final yield (371.9351 W), and performance ratio (59.08173655). Capacity utilization factors were comparable (~0.516), with fresh water (0.5165764992) and black water (0.5154933033) excelling. Fresh water also minimized energy loss (−365.639816266105). Exergy efficiency peaked with fresh water (32.10%). Energo-economic Analysis indicated lower LCOE (3.39 $/MWh) and higher enviro-economic parameter (243.4965981) for Fresh Water. Exergo-environmental Analysis showed consistent efficiency across conditions (exergy performance time [EPT]: 37.28410450–37.35602872). The Embodied Energy for panels was 2840.67 kWh/kg. Freshwater emerges as the frontrunner, offering high energy efficiency, minimized energy loss, and environmental sustainability. Embracing freshwater coolant opens avenues for inventive and environmentally conscious solar energy solutions in buoyant applications.</p>\",\"PeriodicalId\":11701,\"journal\":{\"name\":\"Environmental Progress & Sustainable Energy\",\"volume\":\"43 6\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Progress & Sustainable Energy\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ep.14487\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Progress & Sustainable Energy","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ep.14487","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Performance evaluation of a bifacial floating standalone photovoltaic system with different water bodies: An experimental investigation of 10E analysis
This study delves into harnessing solar energy potential through innovative floating bifacial solar power generation systems. Employing a comprehensive 10E analysis—encompassing Energy, Exergy, Economic, Environmental, Energo-economic, Exergo-economic, Enviro-economic, Energo-environmental, Exergo-environmental, Energy Payback Time, and Embodied Energy factors—the research evaluates energy performance, economic viability, and environmental impact. Among coolants, fresh water exhibited optimal performance, with peak output power (399 W), final yield (371.9351 W), and performance ratio (59.08173655). Capacity utilization factors were comparable (~0.516), with fresh water (0.5165764992) and black water (0.5154933033) excelling. Fresh water also minimized energy loss (−365.639816266105). Exergy efficiency peaked with fresh water (32.10%). Energo-economic Analysis indicated lower LCOE (3.39 $/MWh) and higher enviro-economic parameter (243.4965981) for Fresh Water. Exergo-environmental Analysis showed consistent efficiency across conditions (exergy performance time [EPT]: 37.28410450–37.35602872). The Embodied Energy for panels was 2840.67 kWh/kg. Freshwater emerges as the frontrunner, offering high energy efficiency, minimized energy loss, and environmental sustainability. Embracing freshwater coolant opens avenues for inventive and environmentally conscious solar energy solutions in buoyant applications.
期刊介绍:
Environmental Progress , a quarterly publication of the American Institute of Chemical Engineers, reports on critical issues like remediation and treatment of solid or aqueous wastes, air pollution, sustainability, and sustainable energy. Each issue helps chemical engineers (and those in related fields) stay on top of technological advances in all areas associated with the environment through feature articles, updates, book and software reviews, and editorials.