{"title":"用于绿色多媒体内容分发质量控制的软代理-批评请求重定向","authors":"Pejman Goudarzi, Jaime Lloret","doi":"10.1002/ett.70014","DOIUrl":null,"url":null,"abstract":"<p>Nowadays, network resource limitations which are resulted from the increasing interest of greedy users for streaming video services, lead the network operators to use multimedia content distribution/delivery network (CDN) for distribution of user requests to the network edges and hence optimally use their resources. Due to the stochastic and uncertain nature of user request distributions and green energy suppliers (wind, solar, etc.), developing an optimal request redirection methodology that takes into account both maximizing total users' quality of experience (QoE) and energy cost minimization is a challenging issue. In this paper, a model-free soft actor-critic reinforcement learning algorithm has been developed for QoE enhancement of smart grid-enabled (green) content distribution networks. Contrary to the traditional CDNs, the achieved optimal request redirection policy, while maximizing the total QoE of the system, may redirect the users of a regional CDN point of presence to other (non-regional) PoPs due to real-time energy management mechanism associated with energy cost optimization constraints. We have performed extensive simulations on real electricity pricing data for validating the effectiveness of the proposed method and have compared it with similar approaches. The experimental results show that the proposed intelligent request routing method while preserving the same order of computational complexity, can achieve the energy cost savings up to 65% and improve the average total QoE of CDN users in comparison with similar methods.</p>","PeriodicalId":23282,"journal":{"name":"Transactions on Emerging Telecommunications Technologies","volume":"35 12","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ett.70014","citationCount":"0","resultStr":"{\"title\":\"Soft Actor-Critic Request Redirection for Quality Control in Green Multimedia Content Distribution\",\"authors\":\"Pejman Goudarzi, Jaime Lloret\",\"doi\":\"10.1002/ett.70014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nowadays, network resource limitations which are resulted from the increasing interest of greedy users for streaming video services, lead the network operators to use multimedia content distribution/delivery network (CDN) for distribution of user requests to the network edges and hence optimally use their resources. Due to the stochastic and uncertain nature of user request distributions and green energy suppliers (wind, solar, etc.), developing an optimal request redirection methodology that takes into account both maximizing total users' quality of experience (QoE) and energy cost minimization is a challenging issue. In this paper, a model-free soft actor-critic reinforcement learning algorithm has been developed for QoE enhancement of smart grid-enabled (green) content distribution networks. Contrary to the traditional CDNs, the achieved optimal request redirection policy, while maximizing the total QoE of the system, may redirect the users of a regional CDN point of presence to other (non-regional) PoPs due to real-time energy management mechanism associated with energy cost optimization constraints. We have performed extensive simulations on real electricity pricing data for validating the effectiveness of the proposed method and have compared it with similar approaches. The experimental results show that the proposed intelligent request routing method while preserving the same order of computational complexity, can achieve the energy cost savings up to 65% and improve the average total QoE of CDN users in comparison with similar methods.</p>\",\"PeriodicalId\":23282,\"journal\":{\"name\":\"Transactions on Emerging Telecommunications Technologies\",\"volume\":\"35 12\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ett.70014\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Emerging Telecommunications Technologies\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ett.70014\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Emerging Telecommunications Technologies","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ett.70014","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Soft Actor-Critic Request Redirection for Quality Control in Green Multimedia Content Distribution
Nowadays, network resource limitations which are resulted from the increasing interest of greedy users for streaming video services, lead the network operators to use multimedia content distribution/delivery network (CDN) for distribution of user requests to the network edges and hence optimally use their resources. Due to the stochastic and uncertain nature of user request distributions and green energy suppliers (wind, solar, etc.), developing an optimal request redirection methodology that takes into account both maximizing total users' quality of experience (QoE) and energy cost minimization is a challenging issue. In this paper, a model-free soft actor-critic reinforcement learning algorithm has been developed for QoE enhancement of smart grid-enabled (green) content distribution networks. Contrary to the traditional CDNs, the achieved optimal request redirection policy, while maximizing the total QoE of the system, may redirect the users of a regional CDN point of presence to other (non-regional) PoPs due to real-time energy management mechanism associated with energy cost optimization constraints. We have performed extensive simulations on real electricity pricing data for validating the effectiveness of the proposed method and have compared it with similar approaches. The experimental results show that the proposed intelligent request routing method while preserving the same order of computational complexity, can achieve the energy cost savings up to 65% and improve the average total QoE of CDN users in comparison with similar methods.
期刊介绍:
ransactions on Emerging Telecommunications Technologies (ETT), formerly known as European Transactions on Telecommunications (ETT), has the following aims:
- to attract cutting-edge publications from leading researchers and research groups around the world
- to become a highly cited source of timely research findings in emerging fields of telecommunications
- to limit revision and publication cycles to a few months and thus significantly increase attractiveness to publish
- to become the leading journal for publishing the latest developments in telecommunications