{"title":"PSFNet:用于多时相 InSAR 中持久散射体选择的特征融合框架","authors":"Sijia Chen;Changjun Zhao;Mi Jiang;Hanwen Yu","doi":"10.1109/JSTARS.2024.3485168","DOIUrl":null,"url":null,"abstract":"In the field of multitemporal interferometric synthetic aperture radar (MT-InSAR), the selection of persistent scatterer (PS) is crucial for acquiring ground deformation product. To obtain precise ground deformation, pixels with as high signal-to-noise ratio (SNR) as possible should be selected, while pixels with low SNR should be avoided. To this end, we propose a novel framework, referred to as the PS feature-fusion network (PSFNet), for efficient PS selection. Specifically, we propose a data-driven two-branch network consisting of a ResUNet with spatial and channel attention, as well as a TANet with 3-D convolutional layers and a time-step attention block (T-Attention block), which can use not only spatial features of SAR image but also time-series phase features when selecting PS pixels. In particular, a time-step attention mechanism is proposed for accommodating to interferometric pairs with different SNRs to enhance the feature representation ability of the network. The proposed method was tested using the Sentinel-1 images, showing that it can select more PSs with higher quality compared with StaMPS. In addition, the prediction time of PSFNet requires only 0.26% of the running time of StaMPS, which greatly improves the efficiency of PSFNet for practical applications.","PeriodicalId":13116,"journal":{"name":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","volume":"17 ","pages":"19972-19985"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10729861","citationCount":"0","resultStr":"{\"title\":\"PSFNet: A Feature-Fusion Framework for Persistent Scatterer Selection in Multitemporal InSAR\",\"authors\":\"Sijia Chen;Changjun Zhao;Mi Jiang;Hanwen Yu\",\"doi\":\"10.1109/JSTARS.2024.3485168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the field of multitemporal interferometric synthetic aperture radar (MT-InSAR), the selection of persistent scatterer (PS) is crucial for acquiring ground deformation product. To obtain precise ground deformation, pixels with as high signal-to-noise ratio (SNR) as possible should be selected, while pixels with low SNR should be avoided. To this end, we propose a novel framework, referred to as the PS feature-fusion network (PSFNet), for efficient PS selection. Specifically, we propose a data-driven two-branch network consisting of a ResUNet with spatial and channel attention, as well as a TANet with 3-D convolutional layers and a time-step attention block (T-Attention block), which can use not only spatial features of SAR image but also time-series phase features when selecting PS pixels. In particular, a time-step attention mechanism is proposed for accommodating to interferometric pairs with different SNRs to enhance the feature representation ability of the network. The proposed method was tested using the Sentinel-1 images, showing that it can select more PSs with higher quality compared with StaMPS. In addition, the prediction time of PSFNet requires only 0.26% of the running time of StaMPS, which greatly improves the efficiency of PSFNet for practical applications.\",\"PeriodicalId\":13116,\"journal\":{\"name\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"volume\":\"17 \",\"pages\":\"19972-19985\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10729861\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10729861/\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10729861/","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
PSFNet: A Feature-Fusion Framework for Persistent Scatterer Selection in Multitemporal InSAR
In the field of multitemporal interferometric synthetic aperture radar (MT-InSAR), the selection of persistent scatterer (PS) is crucial for acquiring ground deformation product. To obtain precise ground deformation, pixels with as high signal-to-noise ratio (SNR) as possible should be selected, while pixels with low SNR should be avoided. To this end, we propose a novel framework, referred to as the PS feature-fusion network (PSFNet), for efficient PS selection. Specifically, we propose a data-driven two-branch network consisting of a ResUNet with spatial and channel attention, as well as a TANet with 3-D convolutional layers and a time-step attention block (T-Attention block), which can use not only spatial features of SAR image but also time-series phase features when selecting PS pixels. In particular, a time-step attention mechanism is proposed for accommodating to interferometric pairs with different SNRs to enhance the feature representation ability of the network. The proposed method was tested using the Sentinel-1 images, showing that it can select more PSs with higher quality compared with StaMPS. In addition, the prediction time of PSFNet requires only 0.26% of the running time of StaMPS, which greatly improves the efficiency of PSFNet for practical applications.
期刊介绍:
The IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing addresses the growing field of applications in Earth observations and remote sensing, and also provides a venue for the rapidly expanding special issues that are being sponsored by the IEEE Geosciences and Remote Sensing Society. The journal draws upon the experience of the highly successful “IEEE Transactions on Geoscience and Remote Sensing” and provide a complementary medium for the wide range of topics in applied earth observations. The ‘Applications’ areas encompasses the societal benefit areas of the Global Earth Observations Systems of Systems (GEOSS) program. Through deliberations over two years, ministers from 50 countries agreed to identify nine areas where Earth observation could positively impact the quality of life and health of their respective countries. Some of these are areas not traditionally addressed in the IEEE context. These include biodiversity, health and climate. Yet it is the skill sets of IEEE members, in areas such as observations, communications, computers, signal processing, standards and ocean engineering, that form the technical underpinnings of GEOSS. Thus, the Journal attracts a broad range of interests that serves both present members in new ways and expands the IEEE visibility into new areas.