基于遗传编程自动搜索超参数的图结构学习

IF 5.3 3区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Pengda Wang;Mingjie Lu;Weiqing Yan;Dong Yang;Zhaowei Liu
{"title":"基于遗传编程自动搜索超参数的图结构学习","authors":"Pengda Wang;Mingjie Lu;Weiqing Yan;Dong Yang;Zhaowei Liu","doi":"10.1109/TETCI.2024.3386833","DOIUrl":null,"url":null,"abstract":"Graph neural networks (GNNs) rely heavily on graph structures and artificial hyperparameters, which may increase computation and affect performance. Most GNNs use original graphs, but the original graph data has problems with noise and incomplete information, which easily leads to poor GNN performance. For this kind of problem, recent graph structure learning methods consider how to generate graph structures containing label information. The settings of some hyperparameters will also affect the expression of the GNN model. This paper proposes a genetic graph structure learning method (Genetic-GSL). Different from the existing graph structure learning methods, this paper not only optimizes the graph structure but also the hyperparameters. Specifically, different graph structures and different hyperparameters are used as parents; the offspring are cross-mutated through the parents; and then excellent offspring are selected through evaluation to achieve dynamic fitting of the graph structure and hyperparameters. Experiments show that, compared with other methods, Genetic-GSL basically improves the performance of node classification tasks by 1.2%. With the increase in evolution algebra, Genetic-GSL has good performance on node classification tasks and resistance to adversarial attacks.","PeriodicalId":13135,"journal":{"name":"IEEE Transactions on Emerging Topics in Computational Intelligence","volume":"8 6","pages":"4155-4164"},"PeriodicalIF":5.3000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph Structure Learning With Automatic Search of Hyperparameters Based on Genetic Programming\",\"authors\":\"Pengda Wang;Mingjie Lu;Weiqing Yan;Dong Yang;Zhaowei Liu\",\"doi\":\"10.1109/TETCI.2024.3386833\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph neural networks (GNNs) rely heavily on graph structures and artificial hyperparameters, which may increase computation and affect performance. Most GNNs use original graphs, but the original graph data has problems with noise and incomplete information, which easily leads to poor GNN performance. For this kind of problem, recent graph structure learning methods consider how to generate graph structures containing label information. The settings of some hyperparameters will also affect the expression of the GNN model. This paper proposes a genetic graph structure learning method (Genetic-GSL). Different from the existing graph structure learning methods, this paper not only optimizes the graph structure but also the hyperparameters. Specifically, different graph structures and different hyperparameters are used as parents; the offspring are cross-mutated through the parents; and then excellent offspring are selected through evaluation to achieve dynamic fitting of the graph structure and hyperparameters. Experiments show that, compared with other methods, Genetic-GSL basically improves the performance of node classification tasks by 1.2%. With the increase in evolution algebra, Genetic-GSL has good performance on node classification tasks and resistance to adversarial attacks.\",\"PeriodicalId\":13135,\"journal\":{\"name\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"volume\":\"8 6\",\"pages\":\"4155-4164\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Emerging Topics in Computational Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10504544/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computational Intelligence","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10504544/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

图神经网络(GNN)严重依赖图结构和人工超参数,这可能会增加计算量并影响性能。大多数图神经网络使用原始图,但原始图数据存在噪声和信息不完整的问题,容易导致图神经网络性能不佳。针对这类问题,最近的图结构学习方法考虑了如何生成包含标签信息的图结构。一些超参数的设置也会影响 GNN 模型的表达。本文提出了一种遗传图结构学习方法(Genetic-GSL)。与现有的图结构学习方法不同,本文不仅优化了图结构,还优化了超参数。具体来说,就是将不同的图结构和不同的超参数作为父代,通过父代对子代进行交叉诱变,然后通过评价选出优秀的子代,实现图结构和超参数的动态拟合。实验表明,与其他方法相比,Genetic-GSL 在节点分类任务中的性能基本提高了 1.2%。随着进化代数的增加,遗传-GSL 在节点分类任务上具有良好的性能和抗对抗性攻击的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graph Structure Learning With Automatic Search of Hyperparameters Based on Genetic Programming
Graph neural networks (GNNs) rely heavily on graph structures and artificial hyperparameters, which may increase computation and affect performance. Most GNNs use original graphs, but the original graph data has problems with noise and incomplete information, which easily leads to poor GNN performance. For this kind of problem, recent graph structure learning methods consider how to generate graph structures containing label information. The settings of some hyperparameters will also affect the expression of the GNN model. This paper proposes a genetic graph structure learning method (Genetic-GSL). Different from the existing graph structure learning methods, this paper not only optimizes the graph structure but also the hyperparameters. Specifically, different graph structures and different hyperparameters are used as parents; the offspring are cross-mutated through the parents; and then excellent offspring are selected through evaluation to achieve dynamic fitting of the graph structure and hyperparameters. Experiments show that, compared with other methods, Genetic-GSL basically improves the performance of node classification tasks by 1.2%. With the increase in evolution algebra, Genetic-GSL has good performance on node classification tasks and resistance to adversarial attacks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.30
自引率
7.50%
发文量
147
期刊介绍: The IEEE Transactions on Emerging Topics in Computational Intelligence (TETCI) publishes original articles on emerging aspects of computational intelligence, including theory, applications, and surveys. TETCI is an electronics only publication. TETCI publishes six issues per year. Authors are encouraged to submit manuscripts in any emerging topic in computational intelligence, especially nature-inspired computing topics not covered by other IEEE Computational Intelligence Society journals. A few such illustrative examples are glial cell networks, computational neuroscience, Brain Computer Interface, ambient intelligence, non-fuzzy computing with words, artificial life, cultural learning, artificial endocrine networks, social reasoning, artificial hormone networks, computational intelligence for the IoT and Smart-X technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信