利用条件扩散模型预测人工材料搬运任务中的人体姿势

IF 3.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Liwei Qing;Bingyi Su;Sehee Jung;Lu Lu;Hanwen Wang;Xu Xu
{"title":"利用条件扩散模型预测人工材料搬运任务中的人体姿势","authors":"Liwei Qing;Bingyi Su;Sehee Jung;Lu Lu;Hanwen Wang;Xu Xu","doi":"10.1109/THMS.2024.3472548","DOIUrl":null,"url":null,"abstract":"Predicting workers' body postures is crucial for effective ergonomic interventions to reduce musculoskeletal disorders (MSDs). In this study, we employ a novel generative approach to predict human postures during manual material handling tasks. Specifically, we implement two distinct network architectures, U-Net and multilayer perceptron (MLP), to build the diffusion model. The model training and testing utilizes a dataset featuring 35 full-body anatomical landmarks collected from 25 participants engaged in a variety of lifting tasks. In addition, we compare our models with two conventional generative networks (conditional generative adversarial network and conditional variational autoencoder) for comprehensive analysis. Our results show that the U-Net model performs well in predicting posture similarity [root-mean-square error (RMSE) of key-point coordinates = 5.86 cm; and RMSE of joint angle coordinates = 13.67\n<inline-formula><tex-math>$^{\\circ }$</tex-math></inline-formula>\n], while the MLP model leads to higher posture variability (e.g., standard deviation of joint angles = 4.49\n<inline-formula><tex-math>$^{\\circ }$</tex-math></inline-formula>\n/4.18\n<inline-formula><tex-math>$^{\\circ }$</tex-math></inline-formula>\n for upper arm flexion/extension joints). Moreover, both generative models demonstrate reasonable prediction validity (RMSE of segment lengths are within 4.83 cm). Overall, our proposed diffusion models demonstrate good similarity and validity in predicting lifting postures, while also providing insights into the inherent variability of constrained lifting postures. This novel use of diffusion models shows potential for tailored posture prediction in common occupational environments, representing an advancement in motion synthesis and contributing to workplace design and MSD risk mitigation.","PeriodicalId":48916,"journal":{"name":"IEEE Transactions on Human-Machine Systems","volume":"54 6","pages":"723-732"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting Human Postures for Manual Material Handling Tasks Using a Conditional Diffusion Model\",\"authors\":\"Liwei Qing;Bingyi Su;Sehee Jung;Lu Lu;Hanwen Wang;Xu Xu\",\"doi\":\"10.1109/THMS.2024.3472548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting workers' body postures is crucial for effective ergonomic interventions to reduce musculoskeletal disorders (MSDs). In this study, we employ a novel generative approach to predict human postures during manual material handling tasks. Specifically, we implement two distinct network architectures, U-Net and multilayer perceptron (MLP), to build the diffusion model. The model training and testing utilizes a dataset featuring 35 full-body anatomical landmarks collected from 25 participants engaged in a variety of lifting tasks. In addition, we compare our models with two conventional generative networks (conditional generative adversarial network and conditional variational autoencoder) for comprehensive analysis. Our results show that the U-Net model performs well in predicting posture similarity [root-mean-square error (RMSE) of key-point coordinates = 5.86 cm; and RMSE of joint angle coordinates = 13.67\\n<inline-formula><tex-math>$^{\\\\circ }$</tex-math></inline-formula>\\n], while the MLP model leads to higher posture variability (e.g., standard deviation of joint angles = 4.49\\n<inline-formula><tex-math>$^{\\\\circ }$</tex-math></inline-formula>\\n/4.18\\n<inline-formula><tex-math>$^{\\\\circ }$</tex-math></inline-formula>\\n for upper arm flexion/extension joints). Moreover, both generative models demonstrate reasonable prediction validity (RMSE of segment lengths are within 4.83 cm). Overall, our proposed diffusion models demonstrate good similarity and validity in predicting lifting postures, while also providing insights into the inherent variability of constrained lifting postures. This novel use of diffusion models shows potential for tailored posture prediction in common occupational environments, representing an advancement in motion synthesis and contributing to workplace design and MSD risk mitigation.\",\"PeriodicalId\":48916,\"journal\":{\"name\":\"IEEE Transactions on Human-Machine Systems\",\"volume\":\"54 6\",\"pages\":\"723-732\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Human-Machine Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10726624/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Human-Machine Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10726624/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

预测工人的身体姿势对于采取有效的人体工程学干预措施以减少肌肉骨骼疾病(MSD)至关重要。在这项研究中,我们采用了一种新颖的生成方法来预测人工材料搬运任务中的人体姿势。具体来说,我们采用两种不同的网络架构,即 U-Net 和多层感知器 (MLP),来构建扩散模型。模型的训练和测试使用了一个数据集,该数据集包含从 25 名参与各种搬运任务的参与者身上收集的 35 个全身解剖地标。此外,我们还将我们的模型与两个传统生成网络(条件生成对抗网络和条件变异自动编码器)进行了比较,以进行综合分析。结果表明,U-Net 模型在预测姿势相似性方面表现良好[关键点坐标的均方根误差 = 5.86 cm;关节角度坐标的均方根误差 = 13.67$^{/circ }$],而 MLP 模型则会导致较高的姿势变异性(例如,上臂屈伸关节的关节角度标准偏差 = 4.49$^{circ }$/4.18$^{circ }$)。此外,两个生成模型都显示出合理的预测有效性(节段长度的均方根误差在 4.83 厘米以内)。总体而言,我们提出的扩散模型在预测举重姿势方面表现出了良好的相似性和有效性,同时也为了解受限举重姿势的内在可变性提供了启示。这种新颖的扩散模型显示了在常见职业环境中进行定制姿势预测的潜力,代表了运动合成的进步,有助于工作场所设计和减轻 MSD 风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Human Postures for Manual Material Handling Tasks Using a Conditional Diffusion Model
Predicting workers' body postures is crucial for effective ergonomic interventions to reduce musculoskeletal disorders (MSDs). In this study, we employ a novel generative approach to predict human postures during manual material handling tasks. Specifically, we implement two distinct network architectures, U-Net and multilayer perceptron (MLP), to build the diffusion model. The model training and testing utilizes a dataset featuring 35 full-body anatomical landmarks collected from 25 participants engaged in a variety of lifting tasks. In addition, we compare our models with two conventional generative networks (conditional generative adversarial network and conditional variational autoencoder) for comprehensive analysis. Our results show that the U-Net model performs well in predicting posture similarity [root-mean-square error (RMSE) of key-point coordinates = 5.86 cm; and RMSE of joint angle coordinates = 13.67 $^{\circ }$ ], while the MLP model leads to higher posture variability (e.g., standard deviation of joint angles = 4.49 $^{\circ }$ /4.18 $^{\circ }$ for upper arm flexion/extension joints). Moreover, both generative models demonstrate reasonable prediction validity (RMSE of segment lengths are within 4.83 cm). Overall, our proposed diffusion models demonstrate good similarity and validity in predicting lifting postures, while also providing insights into the inherent variability of constrained lifting postures. This novel use of diffusion models shows potential for tailored posture prediction in common occupational environments, representing an advancement in motion synthesis and contributing to workplace design and MSD risk mitigation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Human-Machine Systems
IEEE Transactions on Human-Machine Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, CYBERNETICS
CiteScore
7.10
自引率
11.10%
发文量
136
期刊介绍: The scope of the IEEE Transactions on Human-Machine Systems includes the fields of human machine systems. It covers human systems and human organizational interactions including cognitive ergonomics, system test and evaluation, and human information processing concerns in systems and organizations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信