Seyma Yucer, Furkan Tektas, Noura Al Moubayed, Toby Breckon
{"title":"人脸识别中的种族偏见:一项调查","authors":"Seyma Yucer, Furkan Tektas, Noura Al Moubayed, Toby Breckon","doi":"10.1145/3705295","DOIUrl":null,"url":null,"abstract":"Facial recognition is one of the most academically studied and industrially developed areas within computer vision where we readily find associated applications deployed globally. This widespread adoption has uncovered significant performance variation across subjects of different racial profiles leading to focused research attention on racial bias within face recognition spanning both current causation and future potential solutions. In support, this study provides an extensive taxonomic review of research on racial bias within face recognition exploring every aspect and stage of the associated facial processing pipeline. Firstly, we discuss the problem definition of racial bias, starting with race definition, grouping strategies, and the societal implications of using race or race-related groupings. Secondly, we divide the common face recognition processing pipeline into four stages: image acquisition, face localisation, face representation, face verification and identification, and review the relevant corresponding literature associated with each stage. The overall aim is to provide comprehensive coverage of the racial bias problem with respect to each and every stage of the face recognition processing pipeline whilst also highlighting the potential pitfalls and limitations of contemporary mitigation strategies that need to be considered within future research endeavours or commercial applications alike.","PeriodicalId":50926,"journal":{"name":"ACM Computing Surveys","volume":"115 1","pages":""},"PeriodicalIF":23.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Racial Bias within Face Recognition: A Survey\",\"authors\":\"Seyma Yucer, Furkan Tektas, Noura Al Moubayed, Toby Breckon\",\"doi\":\"10.1145/3705295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Facial recognition is one of the most academically studied and industrially developed areas within computer vision where we readily find associated applications deployed globally. This widespread adoption has uncovered significant performance variation across subjects of different racial profiles leading to focused research attention on racial bias within face recognition spanning both current causation and future potential solutions. In support, this study provides an extensive taxonomic review of research on racial bias within face recognition exploring every aspect and stage of the associated facial processing pipeline. Firstly, we discuss the problem definition of racial bias, starting with race definition, grouping strategies, and the societal implications of using race or race-related groupings. Secondly, we divide the common face recognition processing pipeline into four stages: image acquisition, face localisation, face representation, face verification and identification, and review the relevant corresponding literature associated with each stage. The overall aim is to provide comprehensive coverage of the racial bias problem with respect to each and every stage of the face recognition processing pipeline whilst also highlighting the potential pitfalls and limitations of contemporary mitigation strategies that need to be considered within future research endeavours or commercial applications alike.\",\"PeriodicalId\":50926,\"journal\":{\"name\":\"ACM Computing Surveys\",\"volume\":\"115 1\",\"pages\":\"\"},\"PeriodicalIF\":23.8000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Computing Surveys\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3705295\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3705295","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
Facial recognition is one of the most academically studied and industrially developed areas within computer vision where we readily find associated applications deployed globally. This widespread adoption has uncovered significant performance variation across subjects of different racial profiles leading to focused research attention on racial bias within face recognition spanning both current causation and future potential solutions. In support, this study provides an extensive taxonomic review of research on racial bias within face recognition exploring every aspect and stage of the associated facial processing pipeline. Firstly, we discuss the problem definition of racial bias, starting with race definition, grouping strategies, and the societal implications of using race or race-related groupings. Secondly, we divide the common face recognition processing pipeline into four stages: image acquisition, face localisation, face representation, face verification and identification, and review the relevant corresponding literature associated with each stage. The overall aim is to provide comprehensive coverage of the racial bias problem with respect to each and every stage of the face recognition processing pipeline whilst also highlighting the potential pitfalls and limitations of contemporary mitigation strategies that need to be considered within future research endeavours or commercial applications alike.
期刊介绍:
ACM Computing Surveys is an academic journal that focuses on publishing surveys and tutorials on various areas of computing research and practice. The journal aims to provide comprehensive and easily understandable articles that guide readers through the literature and help them understand topics outside their specialties. In terms of impact, CSUR has a high reputation with a 2022 Impact Factor of 16.6. It is ranked 3rd out of 111 journals in the field of Computer Science Theory & Methods.
ACM Computing Surveys is indexed and abstracted in various services, including AI2 Semantic Scholar, Baidu, Clarivate/ISI: JCR, CNKI, DeepDyve, DTU, EBSCO: EDS/HOST, and IET Inspec, among others.