利用癌症治疗肽数据:加速癌症研究的机器学习应用案例研究》。

Georgios Feretzakis, Athanasios Anastasiou, Stavros Pitoglou, Aikaterini Sakagianni, Zoi Rakopoulou, Konstantinos Kalodanis, Vasileios Kaldis, Evgenia Paxinou, Dimitris Kalles, Vassilios S Verykios
{"title":"利用癌症治疗肽数据:加速癌症研究的机器学习应用案例研究》。","authors":"Georgios Feretzakis, Athanasios Anastasiou, Stavros Pitoglou, Aikaterini Sakagianni, Zoi Rakopoulou, Konstantinos Kalodanis, Vasileios Kaldis, Evgenia Paxinou, Dimitris Kalles, Vassilios S Verykios","doi":"10.3233/SHTI241068","DOIUrl":null,"url":null,"abstract":"<p><p>This study leverages the DCTPep database, a comprehensive repository of cancer therapy peptides, to explore the application of machine learning in accelerating cancer research. We applied Principal Component Analysis (PCA) and K-means clustering to categorize cancer therapy peptides based on their physicochemical properties. Our analysis identified three distinct clusters, each characterized by unique features such as sequence length, isoelectric point (pI), net charge, and mass. These findings provide valuable insights into the key properties that influence peptide efficacy, offering a foundation for the design of new therapeutic peptides. Future work will focus on experimental validation and the integration of additional data sources to refine the clustering and enhance the predictive power of the model, ultimately contributing to the development of more effective peptide-based cancer treatments.</p>","PeriodicalId":94357,"journal":{"name":"Studies in health technology and informatics","volume":"321 ","pages":"84-88"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Leveraging Cancer Therapy Peptide Data: A Case Study on Machine Learning Application in Accelerating Cancer Research.\",\"authors\":\"Georgios Feretzakis, Athanasios Anastasiou, Stavros Pitoglou, Aikaterini Sakagianni, Zoi Rakopoulou, Konstantinos Kalodanis, Vasileios Kaldis, Evgenia Paxinou, Dimitris Kalles, Vassilios S Verykios\",\"doi\":\"10.3233/SHTI241068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study leverages the DCTPep database, a comprehensive repository of cancer therapy peptides, to explore the application of machine learning in accelerating cancer research. We applied Principal Component Analysis (PCA) and K-means clustering to categorize cancer therapy peptides based on their physicochemical properties. Our analysis identified three distinct clusters, each characterized by unique features such as sequence length, isoelectric point (pI), net charge, and mass. These findings provide valuable insights into the key properties that influence peptide efficacy, offering a foundation for the design of new therapeutic peptides. Future work will focus on experimental validation and the integration of additional data sources to refine the clustering and enhance the predictive power of the model, ultimately contributing to the development of more effective peptide-based cancer treatments.</p>\",\"PeriodicalId\":94357,\"journal\":{\"name\":\"Studies in health technology and informatics\",\"volume\":\"321 \",\"pages\":\"84-88\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in health technology and informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/SHTI241068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in health technology and informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/SHTI241068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用 DCTPep 数据库--癌症治疗多肽的综合资料库--探索机器学习在加速癌症研究中的应用。我们应用主成分分析(PCA)和K-means聚类,根据理化特性对癌症治疗肽进行分类。我们的分析确定了三个不同的聚类,每个聚类都具有独特的特征,如序列长度、等电点(pI)、净电荷和质量。这些发现为了解影响多肽疗效的关键特性提供了宝贵的见解,为设计新的治疗性多肽奠定了基础。未来的工作将侧重于实验验证和整合更多数据源,以完善聚类并增强模型的预测能力,最终为开发更有效的基于多肽的癌症治疗方法做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Leveraging Cancer Therapy Peptide Data: A Case Study on Machine Learning Application in Accelerating Cancer Research.

This study leverages the DCTPep database, a comprehensive repository of cancer therapy peptides, to explore the application of machine learning in accelerating cancer research. We applied Principal Component Analysis (PCA) and K-means clustering to categorize cancer therapy peptides based on their physicochemical properties. Our analysis identified three distinct clusters, each characterized by unique features such as sequence length, isoelectric point (pI), net charge, and mass. These findings provide valuable insights into the key properties that influence peptide efficacy, offering a foundation for the design of new therapeutic peptides. Future work will focus on experimental validation and the integration of additional data sources to refine the clustering and enhance the predictive power of the model, ultimately contributing to the development of more effective peptide-based cancer treatments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信