{"title":"SAMP:基于按比例分割氨基酸组成的集合学习模型识别抗菌肽。","authors":"Junxi Feng, Mengtao Sun, Cong Liu, Weiwei Zhang, Changmou Xu, Jieqiong Wang, Guangshun Wang, Shibiao Wan","doi":"10.1093/bfgp/elae046","DOIUrl":null,"url":null,"abstract":"<p><p>It is projected that 10 million deaths could be attributed to drug-resistant bacteria infections in 2050. To address this concern, identifying new-generation antibiotics is an effective way. Antimicrobial peptides (AMPs), a class of innate immune effectors, have received significant attention for their capacity to eliminate drug-resistant pathogens, including viruses, bacteria, and fungi. Recent years have witnessed widespread applications of computational methods especially machine learning (ML) and deep learning (DL) for discovering AMPs. However, existing methods only use features including compositional, physiochemical, and structural properties of peptides, which cannot fully capture sequence information from AMPs. Here, we present SAMP, an ensemble random projection (RP) based computational model that leverages a new type of feature called proportionalized split amino acid composition (PSAAC) in addition to conventional sequence-based features for AMP prediction. With this new feature set, SAMP captures the residue patterns like sorting signals at both the N-terminal and the C-terminal, while also retaining the sequence order information from the middle peptide fragments. Benchmarking tests on different balanced and imbalanced datasets demonstrate that SAMP consistently outperforms existing state-of-the-art methods, such as iAMPpred and AMPScanner V2, in terms of accuracy, Matthews correlation coefficient (MCC), G-measure, and F1-score. In addition, by leveraging an ensemble RP architecture, SAMP is scalable to processing large-scale AMP identification with further performance improvement, compared to those models without RP. To facilitate the use of SAMP, we have developed a Python package that is freely available at https://github.com/wan-mlab/SAMP.</p>","PeriodicalId":55323,"journal":{"name":"Briefings in Functional Genomics","volume":" ","pages":"879-890"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631067/pdf/","citationCount":"0","resultStr":"{\"title\":\"SAMP: Identifying antimicrobial peptides by an ensemble learning model based on proportionalized split amino acid composition.\",\"authors\":\"Junxi Feng, Mengtao Sun, Cong Liu, Weiwei Zhang, Changmou Xu, Jieqiong Wang, Guangshun Wang, Shibiao Wan\",\"doi\":\"10.1093/bfgp/elae046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>It is projected that 10 million deaths could be attributed to drug-resistant bacteria infections in 2050. To address this concern, identifying new-generation antibiotics is an effective way. Antimicrobial peptides (AMPs), a class of innate immune effectors, have received significant attention for their capacity to eliminate drug-resistant pathogens, including viruses, bacteria, and fungi. Recent years have witnessed widespread applications of computational methods especially machine learning (ML) and deep learning (DL) for discovering AMPs. However, existing methods only use features including compositional, physiochemical, and structural properties of peptides, which cannot fully capture sequence information from AMPs. Here, we present SAMP, an ensemble random projection (RP) based computational model that leverages a new type of feature called proportionalized split amino acid composition (PSAAC) in addition to conventional sequence-based features for AMP prediction. With this new feature set, SAMP captures the residue patterns like sorting signals at both the N-terminal and the C-terminal, while also retaining the sequence order information from the middle peptide fragments. Benchmarking tests on different balanced and imbalanced datasets demonstrate that SAMP consistently outperforms existing state-of-the-art methods, such as iAMPpred and AMPScanner V2, in terms of accuracy, Matthews correlation coefficient (MCC), G-measure, and F1-score. In addition, by leveraging an ensemble RP architecture, SAMP is scalable to processing large-scale AMP identification with further performance improvement, compared to those models without RP. To facilitate the use of SAMP, we have developed a Python package that is freely available at https://github.com/wan-mlab/SAMP.</p>\",\"PeriodicalId\":55323,\"journal\":{\"name\":\"Briefings in Functional Genomics\",\"volume\":\" \",\"pages\":\"879-890\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631067/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Briefings in Functional Genomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/bfgp/elae046\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Briefings in Functional Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/bfgp/elae046","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
预计到 2050 年,可能会有 1 000 万人死于耐药菌感染。要解决这一问题,找出新一代抗生素是一种有效的方法。抗菌肽(AMPs)是一类先天性免疫效应物,因其消除耐药病原体(包括病毒、细菌和真菌)的能力而备受关注。近年来,人们广泛应用计算方法,特别是机器学习(ML)和深度学习(DL)来发现 AMPs。然而,现有的方法只能利用肽的组成、理化和结构特性等特征,无法完全捕捉到 AMPs 的序列信息。在这里,我们提出了一种基于集合随机投影(RP)的计算模型 SAMP,该模型除了利用传统的基于序列的特征进行 AMP 预测外,还利用了一种新型特征,即比例化拆分氨基酸组成(PSAAC)。利用这种新型特征集,SAMP 可以捕捉 N 端和 C 端的残基模式(如排序信号),同时还能保留中间肽段的序列顺序信息。在不同的平衡和不平衡数据集上进行的基准测试表明,SAMP 在准确度、马修斯相关系数 (MCC)、G-measure 和 F1 分数等方面始终优于 iAMPpred 和 AMPScanner V2 等现有的一流方法。此外,通过利用集合 RP 架构,SAMP 可以扩展到处理大规模 AMP 识别,与没有 RP 的模型相比,性能得到进一步提高。为方便使用 SAMP,我们开发了一个 Python 软件包,可在 https://github.com/wan-mlab/SAMP 免费获取。
SAMP: Identifying antimicrobial peptides by an ensemble learning model based on proportionalized split amino acid composition.
It is projected that 10 million deaths could be attributed to drug-resistant bacteria infections in 2050. To address this concern, identifying new-generation antibiotics is an effective way. Antimicrobial peptides (AMPs), a class of innate immune effectors, have received significant attention for their capacity to eliminate drug-resistant pathogens, including viruses, bacteria, and fungi. Recent years have witnessed widespread applications of computational methods especially machine learning (ML) and deep learning (DL) for discovering AMPs. However, existing methods only use features including compositional, physiochemical, and structural properties of peptides, which cannot fully capture sequence information from AMPs. Here, we present SAMP, an ensemble random projection (RP) based computational model that leverages a new type of feature called proportionalized split amino acid composition (PSAAC) in addition to conventional sequence-based features for AMP prediction. With this new feature set, SAMP captures the residue patterns like sorting signals at both the N-terminal and the C-terminal, while also retaining the sequence order information from the middle peptide fragments. Benchmarking tests on different balanced and imbalanced datasets demonstrate that SAMP consistently outperforms existing state-of-the-art methods, such as iAMPpred and AMPScanner V2, in terms of accuracy, Matthews correlation coefficient (MCC), G-measure, and F1-score. In addition, by leveraging an ensemble RP architecture, SAMP is scalable to processing large-scale AMP identification with further performance improvement, compared to those models without RP. To facilitate the use of SAMP, we have developed a Python package that is freely available at https://github.com/wan-mlab/SAMP.
期刊介绍:
Briefings in Functional Genomics publishes high quality peer reviewed articles that focus on the use, development or exploitation of genomic approaches, and their application to all areas of biological research. As well as exploring thematic areas where these techniques and protocols are being used, articles review the impact that these approaches have had, or are likely to have, on their field. Subjects covered by the Journal include but are not restricted to: the identification and functional characterisation of coding and non-coding features in genomes, microarray technologies, gene expression profiling, next generation sequencing, pharmacogenomics, phenomics, SNP technologies, transgenic systems, mutation screens and genotyping. Articles range in scope and depth from the introductory level to specific details of protocols and analyses, encompassing bacterial, fungal, plant, animal and human data.
The editorial board welcome the submission of review articles for publication. Essential criteria for the publication of papers is that they do not contain primary data, and that they are high quality, clearly written review articles which provide a balanced, highly informative and up to date perspective to researchers in the field of functional genomics.