血液粘度建模对芳坦循环儿科患者计算流体动力学模拟的影响。

IF 4.1 2区 工程技术 Q1 MECHANICS
Physics of Fluids Pub Date : 2024-11-01 Epub Date: 2024-11-13 DOI:10.1063/5.0236095
Heng Wei, Coskun Bilgi, Kellie Cao, Jon A Detterich, Niema M Pahlevan, Andrew L Cheng
{"title":"血液粘度建模对芳坦循环儿科患者计算流体动力学模拟的影响。","authors":"Heng Wei, Coskun Bilgi, Kellie Cao, Jon A Detterich, Niema M Pahlevan, Andrew L Cheng","doi":"10.1063/5.0236095","DOIUrl":null,"url":null,"abstract":"<p><p>For univentricular heart patients, the Fontan circulation presents a unique pathophysiology due to chronic non-pulsatile low-shear-rate pulmonary blood flow, where non-Newtonian effects are likely substantial. This study evaluates the influence of non-Newtonian behavior of blood on fluid dynamics and energetic efficiency in pediatric patient-specific models of the Fontan circulation. We used immersed boundary-lattice Boltzmann method simulations to compare Newtonian and non-Newtonian viscosity models. The study included models from twenty patients exhibiting a low cardiac output state (cardiac index of 2 L/min/m<sup>2</sup>). We quantified metrics of energy loss (indexed power loss and viscous dissipation), non-Newtonian importance factors, and hepatic flow distribution. We observed significant differences in flow structure between Newtonian and non-Newtonian models. Specifically, the non-Newtonian simulations demonstrated significantly higher local and average viscosity, corresponding to a higher non-Newtonian importance factor and larger energy loss. Hepatic flow distribution was also significantly different in a subset of patients. These findings suggest that non-Newtonian behavior contributes to flow structure and energetic inefficiency in the low cardiac output state of the Fontan circulation.</p>","PeriodicalId":20066,"journal":{"name":"Physics of Fluids","volume":"36 11","pages":"111911"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577338/pdf/","citationCount":"0","resultStr":"{\"title\":\"The impact of blood viscosity modeling on computational fluid dynamic simulations of pediatric patients with Fontan circulation.\",\"authors\":\"Heng Wei, Coskun Bilgi, Kellie Cao, Jon A Detterich, Niema M Pahlevan, Andrew L Cheng\",\"doi\":\"10.1063/5.0236095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>For univentricular heart patients, the Fontan circulation presents a unique pathophysiology due to chronic non-pulsatile low-shear-rate pulmonary blood flow, where non-Newtonian effects are likely substantial. This study evaluates the influence of non-Newtonian behavior of blood on fluid dynamics and energetic efficiency in pediatric patient-specific models of the Fontan circulation. We used immersed boundary-lattice Boltzmann method simulations to compare Newtonian and non-Newtonian viscosity models. The study included models from twenty patients exhibiting a low cardiac output state (cardiac index of 2 L/min/m<sup>2</sup>). We quantified metrics of energy loss (indexed power loss and viscous dissipation), non-Newtonian importance factors, and hepatic flow distribution. We observed significant differences in flow structure between Newtonian and non-Newtonian models. Specifically, the non-Newtonian simulations demonstrated significantly higher local and average viscosity, corresponding to a higher non-Newtonian importance factor and larger energy loss. Hepatic flow distribution was also significantly different in a subset of patients. These findings suggest that non-Newtonian behavior contributes to flow structure and energetic inefficiency in the low cardiac output state of the Fontan circulation.</p>\",\"PeriodicalId\":20066,\"journal\":{\"name\":\"Physics of Fluids\",\"volume\":\"36 11\",\"pages\":\"111911\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11577338/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0236095\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Fluids","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0236095","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

对于单心室心脏病患者来说,由于长期非搏动性低剪切率肺血流,丰唐循环呈现出独特的病理生理学特征,其中非牛顿效应可能非常明显。本研究评估了血液的非牛顿行为对丰坦循环儿科患者特定模型中流体动力学和能量效率的影响。我们使用沉浸边界-晶格玻尔兹曼法模拟来比较牛顿和非牛顿粘度模型。这项研究包括 20 名表现出低心输出量状态(心脏指数为 2 升/分钟/平方米)的患者的模型。我们对能量损失指标(指数化功率损失和粘性耗散)、非牛顿重要因子和肝流分布进行了量化。我们观察到牛顿模型和非牛顿模型的血流结构存在明显差异。具体来说,非牛顿模拟的局部粘度和平均粘度明显更高,这与更高的非牛顿重要因子和更大的能量损失相对应。在部分患者中,肝流分布也明显不同。这些发现表明,非牛顿行为导致了丰坦循环低心输出量状态下的血流结构和能量效率低下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The impact of blood viscosity modeling on computational fluid dynamic simulations of pediatric patients with Fontan circulation.

For univentricular heart patients, the Fontan circulation presents a unique pathophysiology due to chronic non-pulsatile low-shear-rate pulmonary blood flow, where non-Newtonian effects are likely substantial. This study evaluates the influence of non-Newtonian behavior of blood on fluid dynamics and energetic efficiency in pediatric patient-specific models of the Fontan circulation. We used immersed boundary-lattice Boltzmann method simulations to compare Newtonian and non-Newtonian viscosity models. The study included models from twenty patients exhibiting a low cardiac output state (cardiac index of 2 L/min/m2). We quantified metrics of energy loss (indexed power loss and viscous dissipation), non-Newtonian importance factors, and hepatic flow distribution. We observed significant differences in flow structure between Newtonian and non-Newtonian models. Specifically, the non-Newtonian simulations demonstrated significantly higher local and average viscosity, corresponding to a higher non-Newtonian importance factor and larger energy loss. Hepatic flow distribution was also significantly different in a subset of patients. These findings suggest that non-Newtonian behavior contributes to flow structure and energetic inefficiency in the low cardiac output state of the Fontan circulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics of Fluids
Physics of Fluids 物理-力学
CiteScore
6.50
自引率
41.30%
发文量
2063
审稿时长
2.6 months
期刊介绍: Physics of Fluids (PoF) is a preeminent journal devoted to publishing original theoretical, computational, and experimental contributions to the understanding of the dynamics of gases, liquids, and complex or multiphase fluids. Topics published in PoF are diverse and reflect the most important subjects in fluid dynamics, including, but not limited to: -Acoustics -Aerospace and aeronautical flow -Astrophysical flow -Biofluid mechanics -Cavitation and cavitating flows -Combustion flows -Complex fluids -Compressible flow -Computational fluid dynamics -Contact lines -Continuum mechanics -Convection -Cryogenic flow -Droplets -Electrical and magnetic effects in fluid flow -Foam, bubble, and film mechanics -Flow control -Flow instability and transition -Flow orientation and anisotropy -Flows with other transport phenomena -Flows with complex boundary conditions -Flow visualization -Fluid mechanics -Fluid physical properties -Fluid–structure interactions -Free surface flows -Geophysical flow -Interfacial flow -Knudsen flow -Laminar flow -Liquid crystals -Mathematics of fluids -Micro- and nanofluid mechanics -Mixing -Molecular theory -Nanofluidics -Particulate, multiphase, and granular flow -Processing flows -Relativistic fluid mechanics -Rotating flows -Shock wave phenomena -Soft matter -Stratified flows -Supercritical fluids -Superfluidity -Thermodynamics of flow systems -Transonic flow -Turbulent flow -Viscous and non-Newtonian flow -Viscoelasticity -Vortex dynamics -Waves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信