{"title":"BreathVisionNet:用于呼气 CT 图像合成的肺功能引导 CNN 变换器混合模型","authors":"Tiande Zhang, Haowen Pang, Yanan Wu, Jiaxuan Xu, Lingkai Liu, Shang Li, Shuyue Xia, Rongchang Chen, Zhenyu Liang, Shouliang Qi","doi":"10.1016/j.cmpb.2024.108516","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>Chronic obstructive pulmonary disease (COPD) has high heterogeneity in etiologies and clinical manifestations. Expiratory Computed tomography (CT) can effectively assess air trapping, aiding in disease diagnosis. However, due to concerns about radiation exposure and cost, expiratory CT is not routinely performed. Recent work on synthesizing expiratory CT has primarily focused on imaging features while neglecting patient-specific pulmonary function.</p><p><strong>Methods: </strong>To address these issues, we developed a novel model named BreathVisionNet that incorporates pulmonary function data to guide the synthesis of expiratory CT from inspiratory CT. An architecture combining a convolutional neural network and transformer is introduced to leverage the irregular phenotypic distribution in COPD patients. The model can better understand the long-range and global contexts by incorporating global information into the encoder. The utilization of edge information and multi-view data further enhances the quality of the synthesized CT. Parametric response mapping (PRM) can be estimated by using synthesized expiratory CT and inspiratory CT to quantify COPD phenotypes of the normal, emphysema, and functional small airway disease (fSAD), including their percentages, spatial distributions, and voxel distribution maps.</p><p><strong>Results: </strong>BreathVisionNet outperforms other generative models in terms of synthesized image quality. It achieves a mean absolute error, normalized mean square error, structural similarity index and peak signal-to-noise ratio of 78.207 HU, 0.643, 0.847 and 25.828 dB, respectively. Comparing the predicted and real PRM, the Dice coefficient can reach 0.732 (emphysema) and 0.560 (fSAD). The mean of differences between true and predicted fSAD percentage is 4.42 for the development dataset (low radiation dose CT scans), and 9.05 for an independent external validation dataset (routine dose), indicating that model has great generalizability. A classifier trained on voxel distribution maps can achieve an accuracy of 0.891 in predicting the presence of COPD.</p><p><strong>Conclusions: </strong>BreathVisionNet can accurately synthesize expiratory CT images from inspiratory CT and predict their voxel distribution. The estimated PRM can help to quantify COPD phenotypes of the normal, emphysema, and fSAD. This capability provides additional insights into COPD diversity while only inspiratory CT images are available.</p>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"259 ","pages":"108516"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BreathVisionNet: A pulmonary-function-guided CNN-transformer hybrid model for expiratory CT image synthesis.\",\"authors\":\"Tiande Zhang, Haowen Pang, Yanan Wu, Jiaxuan Xu, Lingkai Liu, Shang Li, Shuyue Xia, Rongchang Chen, Zhenyu Liang, Shouliang Qi\",\"doi\":\"10.1016/j.cmpb.2024.108516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and objective: </strong>Chronic obstructive pulmonary disease (COPD) has high heterogeneity in etiologies and clinical manifestations. Expiratory Computed tomography (CT) can effectively assess air trapping, aiding in disease diagnosis. However, due to concerns about radiation exposure and cost, expiratory CT is not routinely performed. Recent work on synthesizing expiratory CT has primarily focused on imaging features while neglecting patient-specific pulmonary function.</p><p><strong>Methods: </strong>To address these issues, we developed a novel model named BreathVisionNet that incorporates pulmonary function data to guide the synthesis of expiratory CT from inspiratory CT. An architecture combining a convolutional neural network and transformer is introduced to leverage the irregular phenotypic distribution in COPD patients. The model can better understand the long-range and global contexts by incorporating global information into the encoder. The utilization of edge information and multi-view data further enhances the quality of the synthesized CT. Parametric response mapping (PRM) can be estimated by using synthesized expiratory CT and inspiratory CT to quantify COPD phenotypes of the normal, emphysema, and functional small airway disease (fSAD), including their percentages, spatial distributions, and voxel distribution maps.</p><p><strong>Results: </strong>BreathVisionNet outperforms other generative models in terms of synthesized image quality. It achieves a mean absolute error, normalized mean square error, structural similarity index and peak signal-to-noise ratio of 78.207 HU, 0.643, 0.847 and 25.828 dB, respectively. Comparing the predicted and real PRM, the Dice coefficient can reach 0.732 (emphysema) and 0.560 (fSAD). The mean of differences between true and predicted fSAD percentage is 4.42 for the development dataset (low radiation dose CT scans), and 9.05 for an independent external validation dataset (routine dose), indicating that model has great generalizability. A classifier trained on voxel distribution maps can achieve an accuracy of 0.891 in predicting the presence of COPD.</p><p><strong>Conclusions: </strong>BreathVisionNet can accurately synthesize expiratory CT images from inspiratory CT and predict their voxel distribution. The estimated PRM can help to quantify COPD phenotypes of the normal, emphysema, and fSAD. This capability provides additional insights into COPD diversity while only inspiratory CT images are available.</p>\",\"PeriodicalId\":10624,\"journal\":{\"name\":\"Computer methods and programs in biomedicine\",\"volume\":\"259 \",\"pages\":\"108516\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer methods and programs in biomedicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cmpb.2024.108516\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cmpb.2024.108516","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
BreathVisionNet: A pulmonary-function-guided CNN-transformer hybrid model for expiratory CT image synthesis.
Background and objective: Chronic obstructive pulmonary disease (COPD) has high heterogeneity in etiologies and clinical manifestations. Expiratory Computed tomography (CT) can effectively assess air trapping, aiding in disease diagnosis. However, due to concerns about radiation exposure and cost, expiratory CT is not routinely performed. Recent work on synthesizing expiratory CT has primarily focused on imaging features while neglecting patient-specific pulmonary function.
Methods: To address these issues, we developed a novel model named BreathVisionNet that incorporates pulmonary function data to guide the synthesis of expiratory CT from inspiratory CT. An architecture combining a convolutional neural network and transformer is introduced to leverage the irregular phenotypic distribution in COPD patients. The model can better understand the long-range and global contexts by incorporating global information into the encoder. The utilization of edge information and multi-view data further enhances the quality of the synthesized CT. Parametric response mapping (PRM) can be estimated by using synthesized expiratory CT and inspiratory CT to quantify COPD phenotypes of the normal, emphysema, and functional small airway disease (fSAD), including their percentages, spatial distributions, and voxel distribution maps.
Results: BreathVisionNet outperforms other generative models in terms of synthesized image quality. It achieves a mean absolute error, normalized mean square error, structural similarity index and peak signal-to-noise ratio of 78.207 HU, 0.643, 0.847 and 25.828 dB, respectively. Comparing the predicted and real PRM, the Dice coefficient can reach 0.732 (emphysema) and 0.560 (fSAD). The mean of differences between true and predicted fSAD percentage is 4.42 for the development dataset (low radiation dose CT scans), and 9.05 for an independent external validation dataset (routine dose), indicating that model has great generalizability. A classifier trained on voxel distribution maps can achieve an accuracy of 0.891 in predicting the presence of COPD.
Conclusions: BreathVisionNet can accurately synthesize expiratory CT images from inspiratory CT and predict their voxel distribution. The estimated PRM can help to quantify COPD phenotypes of the normal, emphysema, and fSAD. This capability provides additional insights into COPD diversity while only inspiratory CT images are available.
期刊介绍:
To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine.
Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.