新型本征荧光神经甾类化合物的立体特异性和细胞内转运。

IF 4.1 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Vibeke Akkerman, Peter Reinholdt, Rasmus Schnoor-Madsen, Line Lauritsen, Jad Bader, Minxing Qian, Yuanjiang Xu, Gustav Akk, Holger A Scheidt, Peter Müller, Douglas F Covey, Alex S Evers, Jacob Kongsted, Daniel Wüstner
{"title":"新型本征荧光神经甾类化合物的立体特异性和细胞内转运。","authors":"Vibeke Akkerman, Peter Reinholdt, Rasmus Schnoor-Madsen, Line Lauritsen, Jad Bader, Minxing Qian, Yuanjiang Xu, Gustav Akk, Holger A Scheidt, Peter Müller, Douglas F Covey, Alex S Evers, Jacob Kongsted, Daniel Wüstner","doi":"10.1021/acschemneuro.4c00571","DOIUrl":null,"url":null,"abstract":"<p><p>Allopregnanolone (AlloP) is an example of neuroactive steroids (NAS), which is a potent allosteric activator of the γ-aminobutyric acid A (GABA<sub><i>A</i></sub>) receptor. The mechanisms underlying the biological activity of AlloP and other NAS are only partially understood. Here, we present intrinsically fluorescent analogs of AlloP (MQ-323) and its 3β-epimer, epi-allopregnanolone (E-AlloP) (YX-11), and show, by a combination of spectroscopic and computational studies, that these analogs mimic the membrane properties of AlloP and E-AlloP very well. We found stereospecific differences in the orientation and dynamics of the NAS as well as in their impact on membrane permeability. However, all NAS are unable to condense the lipid bilayer, in stark contrast to cholesterol. Using Förster resonance energy transfer (FRET) and electrophysiological measurements, we show that MQ-323 but not YX-11 binds at the intersubunit site of the ELICα<sub>1</sub>GABA<sub><i>A</i></sub> receptor and potentiates GABA-induced receptor currents. In aqueous solvents, YX-11 forms aggregates at much lower concentrations than MQ-323, and loading both analogs onto cyclodextrin allows for their uptake by human astrocytes, where they become enriched in lipid droplets (LDs), as shown by quantitative fluorescence microscopy. Trafficking of the NAS analogs is stereospecific, as uptake and lipid droplet targeting is more pronounced for YX-11 compared to MQ-323. In summary, we present novel minimally modified analogs of AlloP and E-AlloP, which enable us to reveal stereospecific membrane properties, allosteric receptor activation, and intracellular transport of these neurosteroids. Our fluorescence design strategy will be very useful for the analysis of other NAS in the future.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stereospecific Properties and Intracellular Transport of Novel Intrinsically Fluorescent Neurosteroids.\",\"authors\":\"Vibeke Akkerman, Peter Reinholdt, Rasmus Schnoor-Madsen, Line Lauritsen, Jad Bader, Minxing Qian, Yuanjiang Xu, Gustav Akk, Holger A Scheidt, Peter Müller, Douglas F Covey, Alex S Evers, Jacob Kongsted, Daniel Wüstner\",\"doi\":\"10.1021/acschemneuro.4c00571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Allopregnanolone (AlloP) is an example of neuroactive steroids (NAS), which is a potent allosteric activator of the γ-aminobutyric acid A (GABA<sub><i>A</i></sub>) receptor. The mechanisms underlying the biological activity of AlloP and other NAS are only partially understood. Here, we present intrinsically fluorescent analogs of AlloP (MQ-323) and its 3β-epimer, epi-allopregnanolone (E-AlloP) (YX-11), and show, by a combination of spectroscopic and computational studies, that these analogs mimic the membrane properties of AlloP and E-AlloP very well. We found stereospecific differences in the orientation and dynamics of the NAS as well as in their impact on membrane permeability. However, all NAS are unable to condense the lipid bilayer, in stark contrast to cholesterol. Using Förster resonance energy transfer (FRET) and electrophysiological measurements, we show that MQ-323 but not YX-11 binds at the intersubunit site of the ELICα<sub>1</sub>GABA<sub><i>A</i></sub> receptor and potentiates GABA-induced receptor currents. In aqueous solvents, YX-11 forms aggregates at much lower concentrations than MQ-323, and loading both analogs onto cyclodextrin allows for their uptake by human astrocytes, where they become enriched in lipid droplets (LDs), as shown by quantitative fluorescence microscopy. Trafficking of the NAS analogs is stereospecific, as uptake and lipid droplet targeting is more pronounced for YX-11 compared to MQ-323. In summary, we present novel minimally modified analogs of AlloP and E-AlloP, which enable us to reveal stereospecific membrane properties, allosteric receptor activation, and intracellular transport of these neurosteroids. Our fluorescence design strategy will be very useful for the analysis of other NAS in the future.</p>\",\"PeriodicalId\":13,\"journal\":{\"name\":\"ACS Chemical Neuroscience\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acschemneuro.4c00571\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.4c00571","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

异丙孕酮(AlloP)是神经活性类固醇(NAS)的一种,它是γ-氨基丁酸A(GABAA)受体的一种强效异位激活剂。人们对 AlloP 和其他 NAS 的生物活性机制只有部分了解。在这里,我们提出了 AlloP 的本征荧光类似物(MQ-323)及其 3β-epimer, epi-allopregnanolone (E-AlloP) (YX-11),并通过结合光谱和计算研究表明,这些类似物能很好地模拟 AlloP 和 E-AlloP 的膜特性。我们发现,NAS 的取向和动态及其对膜渗透性的影响存在立体特异性差异。然而,所有 NAS 都无法凝结脂质双分子层,这与胆固醇形成了鲜明对比。通过福斯特共振能量转移(FRET)和电生理测量,我们发现 MQ-323 而非 YX-11 能与 ELICα1GABAA 受体的亚基间位点结合,并增强 GABA 诱导的受体电流。在水性溶剂中,YX-11 形成聚集体的浓度比 MQ-323 低得多,将这两种类似物加载到环糊精上可使它们被人类星形胶质细胞吸收,如定量荧光显微镜所示,它们会富集在脂滴(LD)中。NAS 类似物的迁移具有立体特异性,与 MQ-323 相比,YX-11 的摄取和脂滴靶向作用更为明显。总之,我们介绍了新型的 AlloP 和 E-AlloP 微修饰类似物,它们使我们能够揭示这些神经类固醇的立体特异性膜特性、异位受体激活和细胞内转运。我们的荧光设计策略将对今后分析其他 NAS 非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stereospecific Properties and Intracellular Transport of Novel Intrinsically Fluorescent Neurosteroids.

Allopregnanolone (AlloP) is an example of neuroactive steroids (NAS), which is a potent allosteric activator of the γ-aminobutyric acid A (GABAA) receptor. The mechanisms underlying the biological activity of AlloP and other NAS are only partially understood. Here, we present intrinsically fluorescent analogs of AlloP (MQ-323) and its 3β-epimer, epi-allopregnanolone (E-AlloP) (YX-11), and show, by a combination of spectroscopic and computational studies, that these analogs mimic the membrane properties of AlloP and E-AlloP very well. We found stereospecific differences in the orientation and dynamics of the NAS as well as in their impact on membrane permeability. However, all NAS are unable to condense the lipid bilayer, in stark contrast to cholesterol. Using Förster resonance energy transfer (FRET) and electrophysiological measurements, we show that MQ-323 but not YX-11 binds at the intersubunit site of the ELICα1GABAA receptor and potentiates GABA-induced receptor currents. In aqueous solvents, YX-11 forms aggregates at much lower concentrations than MQ-323, and loading both analogs onto cyclodextrin allows for their uptake by human astrocytes, where they become enriched in lipid droplets (LDs), as shown by quantitative fluorescence microscopy. Trafficking of the NAS analogs is stereospecific, as uptake and lipid droplet targeting is more pronounced for YX-11 compared to MQ-323. In summary, we present novel minimally modified analogs of AlloP and E-AlloP, which enable us to reveal stereospecific membrane properties, allosteric receptor activation, and intracellular transport of these neurosteroids. Our fluorescence design strategy will be very useful for the analysis of other NAS in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Chemical Neuroscience
ACS Chemical Neuroscience BIOCHEMISTRY & MOLECULAR BIOLOGY-CHEMISTRY, MEDICINAL
CiteScore
9.20
自引率
4.00%
发文量
323
审稿时长
1 months
期刊介绍: ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following: Neurotransmitters and receptors Neuropharmaceuticals and therapeutics Neural development—Plasticity, and degeneration Chemical, physical, and computational methods in neuroscience Neuronal diseases—basis, detection, and treatment Mechanism of aging, learning, memory and behavior Pain and sensory processing Neurotoxins Neuroscience-inspired bioengineering Development of methods in chemical neurobiology Neuroimaging agents and technologies Animal models for central nervous system diseases Behavioral research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信