Yannick Stöferle, Péter Pál Kalapos, Patrik Willi, Peter Chen
{"title":"受挫路易斯对活化甲基三氧铼的烯烃 Metathesis 作用","authors":"Yannick Stöferle, Péter Pál Kalapos, Patrik Willi, Peter Chen","doi":"10.1021/jacs.4c12888","DOIUrl":null,"url":null,"abstract":"Methyltrioxorhenium (MTO) supported on Al<sub>2</sub>O<sub>3</sub> or SiO<sub>2</sub>–Al<sub>2</sub>O<sub>3</sub> is an efficient heterogeneous alkene metathesis catalyst that works at room temperature and tolerates various functional groups. Surface studies found that MTO interacts with highly Lewis-acidic aluminum centers and that its methyl group is probably C–H activated resulting in rhenium-methylidene species. The exact structure of the catalyst resting state and the active species is subject to scientific debate. Here, we report on the activation of MTO by 2,6-lutidine and tris(pentafluorophenyl)borane (B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>), a frustrated Lewis pair (FLP) in solution. The MTO/FLP catalyst is active in ring-opening metathesis polymerization of norbornene and in cross-metathesis of internal olefins under mild conditions. ESI-MS and NMR studies found that MTO is deprotonated in the presence of the FLP to yield a rhenium-methylidene species. While this initially activated methylidene eluded detection, spraying reaction mixtures with structurally constrained olefins in ESI-MS allowed for the detection of on-cycle rhenium-alkylidene species. Time-course measurements showed that the modest catalytic activity could be attributed to a rapid catalyst deactivation step. One possible deactivation pathway was identified to be a second deprotonation step of the metathesis-active methylidene, yielding a rhenium-methylidyne. Kinetic experiments have shown that it can be reactivated for olefin metathesis by protonation in solution. Additionally, several irreversible catalyst deactivation pathways leading to permanently deactivated catalyst species are hypothesized. We propose that the MTO/FLP system constitutes a homogeneous model system for the heterogeneous MTO catalysts.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"70 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activation of Methyltrioxorhenium for Olefin Metathesis by a Frustrated Lewis Pair\",\"authors\":\"Yannick Stöferle, Péter Pál Kalapos, Patrik Willi, Peter Chen\",\"doi\":\"10.1021/jacs.4c12888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Methyltrioxorhenium (MTO) supported on Al<sub>2</sub>O<sub>3</sub> or SiO<sub>2</sub>–Al<sub>2</sub>O<sub>3</sub> is an efficient heterogeneous alkene metathesis catalyst that works at room temperature and tolerates various functional groups. Surface studies found that MTO interacts with highly Lewis-acidic aluminum centers and that its methyl group is probably C–H activated resulting in rhenium-methylidene species. The exact structure of the catalyst resting state and the active species is subject to scientific debate. Here, we report on the activation of MTO by 2,6-lutidine and tris(pentafluorophenyl)borane (B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>), a frustrated Lewis pair (FLP) in solution. The MTO/FLP catalyst is active in ring-opening metathesis polymerization of norbornene and in cross-metathesis of internal olefins under mild conditions. ESI-MS and NMR studies found that MTO is deprotonated in the presence of the FLP to yield a rhenium-methylidene species. While this initially activated methylidene eluded detection, spraying reaction mixtures with structurally constrained olefins in ESI-MS allowed for the detection of on-cycle rhenium-alkylidene species. Time-course measurements showed that the modest catalytic activity could be attributed to a rapid catalyst deactivation step. One possible deactivation pathway was identified to be a second deprotonation step of the metathesis-active methylidene, yielding a rhenium-methylidyne. Kinetic experiments have shown that it can be reactivated for olefin metathesis by protonation in solution. Additionally, several irreversible catalyst deactivation pathways leading to permanently deactivated catalyst species are hypothesized. We propose that the MTO/FLP system constitutes a homogeneous model system for the heterogeneous MTO catalysts.\",\"PeriodicalId\":49,\"journal\":{\"name\":\"Journal of the American Chemical Society\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":14.4000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the American Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/jacs.4c12888\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c12888","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Activation of Methyltrioxorhenium for Olefin Metathesis by a Frustrated Lewis Pair
Methyltrioxorhenium (MTO) supported on Al2O3 or SiO2–Al2O3 is an efficient heterogeneous alkene metathesis catalyst that works at room temperature and tolerates various functional groups. Surface studies found that MTO interacts with highly Lewis-acidic aluminum centers and that its methyl group is probably C–H activated resulting in rhenium-methylidene species. The exact structure of the catalyst resting state and the active species is subject to scientific debate. Here, we report on the activation of MTO by 2,6-lutidine and tris(pentafluorophenyl)borane (B(C6F5)3), a frustrated Lewis pair (FLP) in solution. The MTO/FLP catalyst is active in ring-opening metathesis polymerization of norbornene and in cross-metathesis of internal olefins under mild conditions. ESI-MS and NMR studies found that MTO is deprotonated in the presence of the FLP to yield a rhenium-methylidene species. While this initially activated methylidene eluded detection, spraying reaction mixtures with structurally constrained olefins in ESI-MS allowed for the detection of on-cycle rhenium-alkylidene species. Time-course measurements showed that the modest catalytic activity could be attributed to a rapid catalyst deactivation step. One possible deactivation pathway was identified to be a second deprotonation step of the metathesis-active methylidene, yielding a rhenium-methylidyne. Kinetic experiments have shown that it can be reactivated for olefin metathesis by protonation in solution. Additionally, several irreversible catalyst deactivation pathways leading to permanently deactivated catalyst species are hypothesized. We propose that the MTO/FLP system constitutes a homogeneous model system for the heterogeneous MTO catalysts.
期刊介绍:
The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.