Hongfei Sun, Liting Chen, Jie Li, Zhi Yang, Jiarui Zhu, Zhongfei Wang, Ge Ren, Jing Cai, Lina Zhao
{"title":"基于新型变压器模型的放射治疗中伪 PET/CT 融合图像的合成。","authors":"Hongfei Sun, Liting Chen, Jie Li, Zhi Yang, Jiarui Zhu, Zhongfei Wang, Ge Ren, Jing Cai, Lina Zhao","doi":"10.1002/mp.17512","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>PET/CT and planning CT are commonly used medical images in radiotherapy for esophageal and nasopharyngeal cancer. However, repeated scans will expose patients to additional radiation doses and also introduce registration errors. This multimodal treatment approach is expected to be further improved.</p>\n </section>\n \n <section>\n \n <h3> Purpose</h3>\n \n <p>A new Transformer model is proposed to obtain pseudo-PET/CT fusion images for esophageal and nasopharyngeal cancer radiotherapy.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>The data of 129 cases of esophageal cancer and 141 cases of nasopharyngeal cancer were retrospectively selected for training, validation, and testing. PET and CT images are used as input. Based on the Transformer model with a “focus-disperse” attention mechanism and multi-consistency loss constraints, the feature information in two images is effectively captured. This ultimately results in the synthesis of pseudo-PET/CT fusion images with enhanced tumor region imaging. During the testing phase, the accuracy of pseudo-PET/CT fusion images was verified in anatomy and dosimetry, and two prospective cases were selected for further dose verification.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>In terms of anatomical verification, the PET/CT fusion image obtained using the wavelet fusion algorithm was used as the ground truth image after correction by clinicians. The evaluation metrics, including peak signal-to-noise ratio, structural similarity index, mean absolute error, and normalized root mean square error, between the pseudo-fused images obtained based on the proposed model and ground truth, are represented by means (standard deviation). They are 37.82 (1.57), 95.23 (2.60), 29.70 (2.49), and 9.48 (0.32), respectively. These numerical values outperform those of the state-of-the-art deep learning comparative models. In terms of dosimetry validation, based on a 3%/2 mm gamma analysis, the average passing rates of global and tumor regions between the pseudo-fused images (with a PET/CT weight ratio of 2:8) and the planning CT images are 97.2% and 95.5%, respectively. These numerical outcomes are superior to those of pseudo-PET/CT fusion images with other weight ratios.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>This pseudo-PET/CT fusion images obtained based on the proposed model hold promise as a new modality in the radiotherapy for esophageal and nasopharyngeal cancer.</p>\n </section>\n </div>","PeriodicalId":18384,"journal":{"name":"Medical physics","volume":"52 2","pages":"1070-1085"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of pseudo-PET/CT fusion images in radiotherapy based on a new transformer model\",\"authors\":\"Hongfei Sun, Liting Chen, Jie Li, Zhi Yang, Jiarui Zhu, Zhongfei Wang, Ge Ren, Jing Cai, Lina Zhao\",\"doi\":\"10.1002/mp.17512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>PET/CT and planning CT are commonly used medical images in radiotherapy for esophageal and nasopharyngeal cancer. However, repeated scans will expose patients to additional radiation doses and also introduce registration errors. This multimodal treatment approach is expected to be further improved.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Purpose</h3>\\n \\n <p>A new Transformer model is proposed to obtain pseudo-PET/CT fusion images for esophageal and nasopharyngeal cancer radiotherapy.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>The data of 129 cases of esophageal cancer and 141 cases of nasopharyngeal cancer were retrospectively selected for training, validation, and testing. PET and CT images are used as input. Based on the Transformer model with a “focus-disperse” attention mechanism and multi-consistency loss constraints, the feature information in two images is effectively captured. This ultimately results in the synthesis of pseudo-PET/CT fusion images with enhanced tumor region imaging. During the testing phase, the accuracy of pseudo-PET/CT fusion images was verified in anatomy and dosimetry, and two prospective cases were selected for further dose verification.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>In terms of anatomical verification, the PET/CT fusion image obtained using the wavelet fusion algorithm was used as the ground truth image after correction by clinicians. The evaluation metrics, including peak signal-to-noise ratio, structural similarity index, mean absolute error, and normalized root mean square error, between the pseudo-fused images obtained based on the proposed model and ground truth, are represented by means (standard deviation). They are 37.82 (1.57), 95.23 (2.60), 29.70 (2.49), and 9.48 (0.32), respectively. These numerical values outperform those of the state-of-the-art deep learning comparative models. In terms of dosimetry validation, based on a 3%/2 mm gamma analysis, the average passing rates of global and tumor regions between the pseudo-fused images (with a PET/CT weight ratio of 2:8) and the planning CT images are 97.2% and 95.5%, respectively. These numerical outcomes are superior to those of pseudo-PET/CT fusion images with other weight ratios.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>This pseudo-PET/CT fusion images obtained based on the proposed model hold promise as a new modality in the radiotherapy for esophageal and nasopharyngeal cancer.</p>\\n </section>\\n </div>\",\"PeriodicalId\":18384,\"journal\":{\"name\":\"Medical physics\",\"volume\":\"52 2\",\"pages\":\"1070-1085\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical physics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mp.17512\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical physics","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mp.17512","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Synthesis of pseudo-PET/CT fusion images in radiotherapy based on a new transformer model
Background
PET/CT and planning CT are commonly used medical images in radiotherapy for esophageal and nasopharyngeal cancer. However, repeated scans will expose patients to additional radiation doses and also introduce registration errors. This multimodal treatment approach is expected to be further improved.
Purpose
A new Transformer model is proposed to obtain pseudo-PET/CT fusion images for esophageal and nasopharyngeal cancer radiotherapy.
Methods
The data of 129 cases of esophageal cancer and 141 cases of nasopharyngeal cancer were retrospectively selected for training, validation, and testing. PET and CT images are used as input. Based on the Transformer model with a “focus-disperse” attention mechanism and multi-consistency loss constraints, the feature information in two images is effectively captured. This ultimately results in the synthesis of pseudo-PET/CT fusion images with enhanced tumor region imaging. During the testing phase, the accuracy of pseudo-PET/CT fusion images was verified in anatomy and dosimetry, and two prospective cases were selected for further dose verification.
Results
In terms of anatomical verification, the PET/CT fusion image obtained using the wavelet fusion algorithm was used as the ground truth image after correction by clinicians. The evaluation metrics, including peak signal-to-noise ratio, structural similarity index, mean absolute error, and normalized root mean square error, between the pseudo-fused images obtained based on the proposed model and ground truth, are represented by means (standard deviation). They are 37.82 (1.57), 95.23 (2.60), 29.70 (2.49), and 9.48 (0.32), respectively. These numerical values outperform those of the state-of-the-art deep learning comparative models. In terms of dosimetry validation, based on a 3%/2 mm gamma analysis, the average passing rates of global and tumor regions between the pseudo-fused images (with a PET/CT weight ratio of 2:8) and the planning CT images are 97.2% and 95.5%, respectively. These numerical outcomes are superior to those of pseudo-PET/CT fusion images with other weight ratios.
Conclusions
This pseudo-PET/CT fusion images obtained based on the proposed model hold promise as a new modality in the radiotherapy for esophageal and nasopharyngeal cancer.
期刊介绍:
Medical Physics publishes original, high impact physics, imaging science, and engineering research that advances patient diagnosis and therapy through contributions in 1) Basic science developments with high potential for clinical translation 2) Clinical applications of cutting edge engineering and physics innovations 3) Broadly applicable and innovative clinical physics developments
Medical Physics is a journal of global scope and reach. By publishing in Medical Physics your research will reach an international, multidisciplinary audience including practicing medical physicists as well as physics- and engineering based translational scientists. We work closely with authors of promising articles to improve their quality.