S. Perdana-Decker , E. Velasco , J. Werner , U. Dickhoefer
{"title":"放牧温带半天然草地的奶牛的氮排泄和利用情况。","authors":"S. Perdana-Decker , E. Velasco , J. Werner , U. Dickhoefer","doi":"10.1016/j.animal.2024.101358","DOIUrl":null,"url":null,"abstract":"<div><div>Diets reliant on grazed, temperate herbage are prone to greater nitrogen (<strong>N</strong>) losses via urine than balanced stall-fed diets which poses a greater risk for N emissions. Measures for improving the N utilisation in grazing-based dairy cattle systems are predominantly investigated on homogenous clover-ryegrass pastures with high herbage yields and nutritional quality. In contrast, grazing-based systems reliant on less external inputs (e.g., synthetic fertilisers or concentrates) using semi-natural grassland as main feed source, such as in large parts of Central Europe, received less attention. The N utilisation and excretion of grazing cows in low-input dairy farms were, thus, investigated on nine commercial organic dairy farms in South Germany across one to four periods per farm. The dataset captured a diverse set of dairy production systems comprising 323 individual animal observations. A mean (± one SD) milk production, DM intake (<strong>DMI</strong>), and pasture DMI of 23.9 kg (± 5.35), 21.0 kg (± 3.21), and 11.3 kg/d (± 4.83), respectively, was determined. Feed intake was estimated using titanium dioxide and faecal CP concentration as markers of faecal excretion and diet digestibility, respectively. Milk N use efficiency (<strong>MNE</strong>; i.e., milk N secretion as share of N intake) averaged 24.7 g/100 g N intake (± 5.91), which is greater than observations in temperate, high-input grazing systems but lower than in cows receiving balanced diets in the barn. The MNE and another seven indicators of N utilisation and excretion displayed a wide range of values. The grazing management factors explaining this variation were, thus, identified via backward elimination. The supplementation strategy had the greatest potential for manipulating N utilisation and excretion of dairy cows. Increasing shares of fresh forages (i.e., meadow grass or clover-grass leys) as well as of hay in supplement DMI increased N utilisation (e.g., MNE) and decreased urinary N excretion (e.g., urinary N to creatinine ratio), while increasing shares of concentrates in supplement DMI are related to lower N losses via urine. At the same time, increases in total supplement DMI reduced N utilisation and increased urinary N excretion. Hence, full-time grazing combined with supplementation of fresh forage and hay in the barn is a viable option for low-input, grazing-based dairy operations with moderate levels of N losses.</div></div>","PeriodicalId":50789,"journal":{"name":"Animal","volume":"18 12","pages":"Article 101358"},"PeriodicalIF":4.0000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nitrogen excretion and utilisation of dairy cows grazing temperate semi-natural grasslands\",\"authors\":\"S. Perdana-Decker , E. Velasco , J. Werner , U. Dickhoefer\",\"doi\":\"10.1016/j.animal.2024.101358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Diets reliant on grazed, temperate herbage are prone to greater nitrogen (<strong>N</strong>) losses via urine than balanced stall-fed diets which poses a greater risk for N emissions. Measures for improving the N utilisation in grazing-based dairy cattle systems are predominantly investigated on homogenous clover-ryegrass pastures with high herbage yields and nutritional quality. In contrast, grazing-based systems reliant on less external inputs (e.g., synthetic fertilisers or concentrates) using semi-natural grassland as main feed source, such as in large parts of Central Europe, received less attention. The N utilisation and excretion of grazing cows in low-input dairy farms were, thus, investigated on nine commercial organic dairy farms in South Germany across one to four periods per farm. The dataset captured a diverse set of dairy production systems comprising 323 individual animal observations. A mean (± one SD) milk production, DM intake (<strong>DMI</strong>), and pasture DMI of 23.9 kg (± 5.35), 21.0 kg (± 3.21), and 11.3 kg/d (± 4.83), respectively, was determined. Feed intake was estimated using titanium dioxide and faecal CP concentration as markers of faecal excretion and diet digestibility, respectively. Milk N use efficiency (<strong>MNE</strong>; i.e., milk N secretion as share of N intake) averaged 24.7 g/100 g N intake (± 5.91), which is greater than observations in temperate, high-input grazing systems but lower than in cows receiving balanced diets in the barn. The MNE and another seven indicators of N utilisation and excretion displayed a wide range of values. The grazing management factors explaining this variation were, thus, identified via backward elimination. The supplementation strategy had the greatest potential for manipulating N utilisation and excretion of dairy cows. Increasing shares of fresh forages (i.e., meadow grass or clover-grass leys) as well as of hay in supplement DMI increased N utilisation (e.g., MNE) and decreased urinary N excretion (e.g., urinary N to creatinine ratio), while increasing shares of concentrates in supplement DMI are related to lower N losses via urine. At the same time, increases in total supplement DMI reduced N utilisation and increased urinary N excretion. Hence, full-time grazing combined with supplementation of fresh forage and hay in the barn is a viable option for low-input, grazing-based dairy operations with moderate levels of N losses.</div></div>\",\"PeriodicalId\":50789,\"journal\":{\"name\":\"Animal\",\"volume\":\"18 12\",\"pages\":\"Article 101358\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-10-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Animal\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751731124002957\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURE, DAIRY & ANIMAL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751731124002957","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
Nitrogen excretion and utilisation of dairy cows grazing temperate semi-natural grasslands
Diets reliant on grazed, temperate herbage are prone to greater nitrogen (N) losses via urine than balanced stall-fed diets which poses a greater risk for N emissions. Measures for improving the N utilisation in grazing-based dairy cattle systems are predominantly investigated on homogenous clover-ryegrass pastures with high herbage yields and nutritional quality. In contrast, grazing-based systems reliant on less external inputs (e.g., synthetic fertilisers or concentrates) using semi-natural grassland as main feed source, such as in large parts of Central Europe, received less attention. The N utilisation and excretion of grazing cows in low-input dairy farms were, thus, investigated on nine commercial organic dairy farms in South Germany across one to four periods per farm. The dataset captured a diverse set of dairy production systems comprising 323 individual animal observations. A mean (± one SD) milk production, DM intake (DMI), and pasture DMI of 23.9 kg (± 5.35), 21.0 kg (± 3.21), and 11.3 kg/d (± 4.83), respectively, was determined. Feed intake was estimated using titanium dioxide and faecal CP concentration as markers of faecal excretion and diet digestibility, respectively. Milk N use efficiency (MNE; i.e., milk N secretion as share of N intake) averaged 24.7 g/100 g N intake (± 5.91), which is greater than observations in temperate, high-input grazing systems but lower than in cows receiving balanced diets in the barn. The MNE and another seven indicators of N utilisation and excretion displayed a wide range of values. The grazing management factors explaining this variation were, thus, identified via backward elimination. The supplementation strategy had the greatest potential for manipulating N utilisation and excretion of dairy cows. Increasing shares of fresh forages (i.e., meadow grass or clover-grass leys) as well as of hay in supplement DMI increased N utilisation (e.g., MNE) and decreased urinary N excretion (e.g., urinary N to creatinine ratio), while increasing shares of concentrates in supplement DMI are related to lower N losses via urine. At the same time, increases in total supplement DMI reduced N utilisation and increased urinary N excretion. Hence, full-time grazing combined with supplementation of fresh forage and hay in the barn is a viable option for low-input, grazing-based dairy operations with moderate levels of N losses.
期刊介绍:
Editorial board
animal attracts the best research in animal biology and animal systems from across the spectrum of the agricultural, biomedical, and environmental sciences. It is the central element in an exciting collaboration between the British Society of Animal Science (BSAS), Institut National de la Recherche Agronomique (INRA) and the European Federation of Animal Science (EAAP) and represents a merging of three scientific journals: Animal Science; Animal Research; Reproduction, Nutrition, Development. animal publishes original cutting-edge research, ''hot'' topics and horizon-scanning reviews on animal-related aspects of the life sciences at the molecular, cellular, organ, whole animal and production system levels. The main subject areas include: breeding and genetics; nutrition; physiology and functional biology of systems; behaviour, health and welfare; farming systems, environmental impact and climate change; product quality, human health and well-being. Animal models and papers dealing with the integration of research between these topics and their impact on the environment and people are particularly welcome.