{"title":"基于脑电图信号复杂性和频率特性的精确麻醉深度监测。","authors":"Tianning Li, Yi Huang, Peng Wen, Yan Li","doi":"10.1186/s40708-024-00241-y","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate monitoring of the depth of anesthesia (DoA) is essential for ensuring patient safety and effective anesthesia management. Existing methods, such as the Bispectral Index (BIS), are limited in real-time accuracy and robustness. Current methods have problems in generalizability across diverse patient datasets and are sensitive to artifacts, making it difficult to provide reliable DoA assessments in real time. This study proposes a novel method for DoA monitoring using EEG signals, focusing on accuracy, robustness, and real-time application. EEG signals were pre-processed using wavelet denoising and discrete wavelet transform (DWT). Features such as Permutation Lempel-Ziv Complexity (PLZC) and Power Spectral Density (PSD) were extracted. A random forest regression model was employed to estimate anesthetic states, and an unsupervised learning method using the Hurst exponent algorithm and hierarchical clustering was introduced to detect transitions between anesthesia states. The method was tested on two independent datasets (UniSQ and VitalDB), achieving an average Pearson correlation coefficient of 0.86 and 0.82, respectively. For the combined dataset, the model demonstrated an R-squared value of 0.70, a RMSE of 6.31, a MAE of 8.38, and a Pearson correlation of 0.84, showcasing its robustness and generalizability. This approach offers a more accurate and reliable real-time DoA monitoring tool that could significantly improve patient safety and anesthesia management, especially in diverse clinical environments.</p>","PeriodicalId":37465,"journal":{"name":"Brain Informatics","volume":"11 1","pages":"28"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582228/pdf/","citationCount":"0","resultStr":"{\"title\":\"Accurate depth of anesthesia monitoring based on EEG signal complexity and frequency features.\",\"authors\":\"Tianning Li, Yi Huang, Peng Wen, Yan Li\",\"doi\":\"10.1186/s40708-024-00241-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Accurate monitoring of the depth of anesthesia (DoA) is essential for ensuring patient safety and effective anesthesia management. Existing methods, such as the Bispectral Index (BIS), are limited in real-time accuracy and robustness. Current methods have problems in generalizability across diverse patient datasets and are sensitive to artifacts, making it difficult to provide reliable DoA assessments in real time. This study proposes a novel method for DoA monitoring using EEG signals, focusing on accuracy, robustness, and real-time application. EEG signals were pre-processed using wavelet denoising and discrete wavelet transform (DWT). Features such as Permutation Lempel-Ziv Complexity (PLZC) and Power Spectral Density (PSD) were extracted. A random forest regression model was employed to estimate anesthetic states, and an unsupervised learning method using the Hurst exponent algorithm and hierarchical clustering was introduced to detect transitions between anesthesia states. The method was tested on two independent datasets (UniSQ and VitalDB), achieving an average Pearson correlation coefficient of 0.86 and 0.82, respectively. For the combined dataset, the model demonstrated an R-squared value of 0.70, a RMSE of 6.31, a MAE of 8.38, and a Pearson correlation of 0.84, showcasing its robustness and generalizability. This approach offers a more accurate and reliable real-time DoA monitoring tool that could significantly improve patient safety and anesthesia management, especially in diverse clinical environments.</p>\",\"PeriodicalId\":37465,\"journal\":{\"name\":\"Brain Informatics\",\"volume\":\"11 1\",\"pages\":\"28\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582228/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40708-024-00241-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40708-024-00241-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
摘要
准确监测麻醉深度(DoA)对于确保患者安全和有效的麻醉管理至关重要。现有的方法,如双谱指数(BIS),在实时准确性和稳健性方面受到限制。目前的方法在不同患者数据集之间的通用性存在问题,而且对伪影很敏感,因此很难实时提供可靠的 DoA 评估。本研究提出了一种利用脑电信号监测 DoA 的新方法,重点关注准确性、鲁棒性和实时应用。使用小波去噪和离散小波变换(DWT)对脑电信号进行预处理。提取的特征包括珀尔帖-伦佩尔-齐夫复杂度(PLZC)和功率谱密度(PSD)。采用随机森林回归模型来估计麻醉状态,并使用赫斯特指数算法和分层聚类的无监督学习方法来检测麻醉状态之间的转换。该方法在两个独立数据集(UniSQ 和 VitalDB)上进行了测试,平均皮尔逊相关系数分别为 0.86 和 0.82。对于综合数据集,该模型的 R 方值为 0.70,RMSE 为 6.31,MAE 为 8.38,Pearson 相关性为 0.84,显示了其稳健性和普适性。这种方法提供了一种更准确、更可靠的实时 DoA 监测工具,可显著改善患者安全和麻醉管理,尤其是在不同的临床环境中。
Accurate depth of anesthesia monitoring based on EEG signal complexity and frequency features.
Accurate monitoring of the depth of anesthesia (DoA) is essential for ensuring patient safety and effective anesthesia management. Existing methods, such as the Bispectral Index (BIS), are limited in real-time accuracy and robustness. Current methods have problems in generalizability across diverse patient datasets and are sensitive to artifacts, making it difficult to provide reliable DoA assessments in real time. This study proposes a novel method for DoA monitoring using EEG signals, focusing on accuracy, robustness, and real-time application. EEG signals were pre-processed using wavelet denoising and discrete wavelet transform (DWT). Features such as Permutation Lempel-Ziv Complexity (PLZC) and Power Spectral Density (PSD) were extracted. A random forest regression model was employed to estimate anesthetic states, and an unsupervised learning method using the Hurst exponent algorithm and hierarchical clustering was introduced to detect transitions between anesthesia states. The method was tested on two independent datasets (UniSQ and VitalDB), achieving an average Pearson correlation coefficient of 0.86 and 0.82, respectively. For the combined dataset, the model demonstrated an R-squared value of 0.70, a RMSE of 6.31, a MAE of 8.38, and a Pearson correlation of 0.84, showcasing its robustness and generalizability. This approach offers a more accurate and reliable real-time DoA monitoring tool that could significantly improve patient safety and anesthesia management, especially in diverse clinical environments.
期刊介绍:
Brain Informatics is an international, peer-reviewed, interdisciplinary open-access journal published under the brand SpringerOpen, which provides a unique platform for researchers and practitioners to disseminate original research on computational and informatics technologies related to brain. This journal addresses the computational, cognitive, physiological, biological, physical, ecological and social perspectives of brain informatics. It also welcomes emerging information technologies and advanced neuro-imaging technologies, such as big data analytics and interactive knowledge discovery related to various large-scale brain studies and their applications. This journal will publish high-quality original research papers, brief reports and critical reviews in all theoretical, technological, clinical and interdisciplinary studies that make up the field of brain informatics and its applications in brain-machine intelligence, brain-inspired intelligent systems, mental health and brain disorders, etc. The scope of papers includes the following five tracks: Track 1: Cognitive and Computational Foundations of Brain Science Track 2: Human Information Processing Systems Track 3: Brain Big Data Analytics, Curation and Management Track 4: Informatics Paradigms for Brain and Mental Health Research Track 5: Brain-Machine Intelligence and Brain-Inspired Computing