{"title":"小鼠小肠类器官培养物","authors":"Lei Chen, Xiaoting Xu","doi":"10.1007/7651_2024_576","DOIUrl":null,"url":null,"abstract":"<p><p>The intestinal epithelium is a highly dynamic and self-renewing tissue that is crucial for maintaining gut homeostasis. It can be cultured in vitro from isolated crypts to form three-dimensional (3D) intestinal organoids. These organoids have the ability to proliferate and differentiate into various epithelial cell lineages, offering a more physiologically relevant model compared to traditional two-dimensional (2D) culture systems. Mesenchymal cells, located near epithelial cells, regulate epithelial behavior through paracrine signaling and provide structural support. Building on recent advances in the biology of epithelial and mesenchymal cells, we have developed a coculture system that integrates intestinal organoids with mesenchymal cells. In this system, intestinal organoids are cultured in direct or indirect contact with mesenchymal cells, allowing for the simulation of signal exchange and interactions within the in vivo-like microenvironment. This coculture system not only preserves the 3D architecture of the organoids but also enhances their physiological relevance by introducing cellular complexity. The system is capable of long-term maintenance and is adaptable to a wide range of experimental manipulations. As such, this coculture model serves as a powerful tool for studying the interactions between the intestinal epithelium and its surrounding stroma, providing new insights into stem cell biology, tissue regeneration, and disease mechanisms. Here, we introduce the methods of mouse crypt isolation, intestinal organoid culture, and its coculture with mesenchymal cell.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mouse Small Intestinal Organoid Cultures.\",\"authors\":\"Lei Chen, Xiaoting Xu\",\"doi\":\"10.1007/7651_2024_576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The intestinal epithelium is a highly dynamic and self-renewing tissue that is crucial for maintaining gut homeostasis. It can be cultured in vitro from isolated crypts to form three-dimensional (3D) intestinal organoids. These organoids have the ability to proliferate and differentiate into various epithelial cell lineages, offering a more physiologically relevant model compared to traditional two-dimensional (2D) culture systems. Mesenchymal cells, located near epithelial cells, regulate epithelial behavior through paracrine signaling and provide structural support. Building on recent advances in the biology of epithelial and mesenchymal cells, we have developed a coculture system that integrates intestinal organoids with mesenchymal cells. In this system, intestinal organoids are cultured in direct or indirect contact with mesenchymal cells, allowing for the simulation of signal exchange and interactions within the in vivo-like microenvironment. This coculture system not only preserves the 3D architecture of the organoids but also enhances their physiological relevance by introducing cellular complexity. The system is capable of long-term maintenance and is adaptable to a wide range of experimental manipulations. As such, this coculture model serves as a powerful tool for studying the interactions between the intestinal epithelium and its surrounding stroma, providing new insights into stem cell biology, tissue regeneration, and disease mechanisms. Here, we introduce the methods of mouse crypt isolation, intestinal organoid culture, and its coculture with mesenchymal cell.</p>\",\"PeriodicalId\":18490,\"journal\":{\"name\":\"Methods in molecular biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methods in molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/7651_2024_576\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/7651_2024_576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
The intestinal epithelium is a highly dynamic and self-renewing tissue that is crucial for maintaining gut homeostasis. It can be cultured in vitro from isolated crypts to form three-dimensional (3D) intestinal organoids. These organoids have the ability to proliferate and differentiate into various epithelial cell lineages, offering a more physiologically relevant model compared to traditional two-dimensional (2D) culture systems. Mesenchymal cells, located near epithelial cells, regulate epithelial behavior through paracrine signaling and provide structural support. Building on recent advances in the biology of epithelial and mesenchymal cells, we have developed a coculture system that integrates intestinal organoids with mesenchymal cells. In this system, intestinal organoids are cultured in direct or indirect contact with mesenchymal cells, allowing for the simulation of signal exchange and interactions within the in vivo-like microenvironment. This coculture system not only preserves the 3D architecture of the organoids but also enhances their physiological relevance by introducing cellular complexity. The system is capable of long-term maintenance and is adaptable to a wide range of experimental manipulations. As such, this coculture model serves as a powerful tool for studying the interactions between the intestinal epithelium and its surrounding stroma, providing new insights into stem cell biology, tissue regeneration, and disease mechanisms. Here, we introduce the methods of mouse crypt isolation, intestinal organoid culture, and its coculture with mesenchymal cell.
期刊介绍:
For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.