Ida Cecilie Jensen, Andreas Schramm, Joachim Offenberg
{"title":"真菌战士:木蚁(Formica polyctena)及其相关微生物抑制植物病原真菌。","authors":"Ida Cecilie Jensen, Andreas Schramm, Joachim Offenberg","doi":"10.1007/s00248-024-02464-2","DOIUrl":null,"url":null,"abstract":"<p><p>Plant diseases cost the global economy billions of US dollars every year. The problem has mainly been addressed by using chemical pesticides, but recently, the use of ants has shown promising effects against plant pathogens. However, the mechanisms accounting for these effects have not yet been determined. One possible explanation is antimicrobial microorganisms associated with ants. Through controlled laboratory experiments, we investigated the inhibitory effects of wood ants (Formica polyctena) and their associated microorganisms against economically important plant pathogenic fungi. All live ants, extracts from crushed ants, and extracts from washed ants significantly inhibited the apple brown rot (Monilinia fructigena) while yielding the growth of other microbes. Furthermore, all investigated wood ants transferred microorganisms to their surroundings within 10 s when walking across a surface. We isolated the most dominant microorganisms deposited by walking ants and from washed ant extracts (i.e., strains likely found on the surface of ants), resulting in four bacterial cultures and one yeast. Two of these isolates, strain I3 (most closely related to Pseudomonas sichuanensis and P. entomophila) and strain I1b (most closely related to Bacillus mycoides), showed inhibitory effects against apple brown rot and apple scab (Venturia inaequalis), while strain I3 also inhibited gray mold (Botrytis cinerea) and Fusarium head blight (Fusarium graminearum). These results suggest that wood ants have potential as biological control agents against commercially relevant plant pathogens, and that their inhibitory effect might be at least partially caused by antibiotic compounds produced by their associated microorganisms.</p>","PeriodicalId":18708,"journal":{"name":"Microbial Ecology","volume":"87 1","pages":"146"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582330/pdf/","citationCount":"0","resultStr":"{\"title\":\"Fungus Fighters: Wood Ants (Formica polyctena) and Their Associated Microbes Inhibit Plant Pathogenic Fungi.\",\"authors\":\"Ida Cecilie Jensen, Andreas Schramm, Joachim Offenberg\",\"doi\":\"10.1007/s00248-024-02464-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Plant diseases cost the global economy billions of US dollars every year. The problem has mainly been addressed by using chemical pesticides, but recently, the use of ants has shown promising effects against plant pathogens. However, the mechanisms accounting for these effects have not yet been determined. One possible explanation is antimicrobial microorganisms associated with ants. Through controlled laboratory experiments, we investigated the inhibitory effects of wood ants (Formica polyctena) and their associated microorganisms against economically important plant pathogenic fungi. All live ants, extracts from crushed ants, and extracts from washed ants significantly inhibited the apple brown rot (Monilinia fructigena) while yielding the growth of other microbes. Furthermore, all investigated wood ants transferred microorganisms to their surroundings within 10 s when walking across a surface. We isolated the most dominant microorganisms deposited by walking ants and from washed ant extracts (i.e., strains likely found on the surface of ants), resulting in four bacterial cultures and one yeast. Two of these isolates, strain I3 (most closely related to Pseudomonas sichuanensis and P. entomophila) and strain I1b (most closely related to Bacillus mycoides), showed inhibitory effects against apple brown rot and apple scab (Venturia inaequalis), while strain I3 also inhibited gray mold (Botrytis cinerea) and Fusarium head blight (Fusarium graminearum). These results suggest that wood ants have potential as biological control agents against commercially relevant plant pathogens, and that their inhibitory effect might be at least partially caused by antibiotic compounds produced by their associated microorganisms.</p>\",\"PeriodicalId\":18708,\"journal\":{\"name\":\"Microbial Ecology\",\"volume\":\"87 1\",\"pages\":\"146\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582330/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s00248-024-02464-2\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00248-024-02464-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Fungus Fighters: Wood Ants (Formica polyctena) and Their Associated Microbes Inhibit Plant Pathogenic Fungi.
Plant diseases cost the global economy billions of US dollars every year. The problem has mainly been addressed by using chemical pesticides, but recently, the use of ants has shown promising effects against plant pathogens. However, the mechanisms accounting for these effects have not yet been determined. One possible explanation is antimicrobial microorganisms associated with ants. Through controlled laboratory experiments, we investigated the inhibitory effects of wood ants (Formica polyctena) and their associated microorganisms against economically important plant pathogenic fungi. All live ants, extracts from crushed ants, and extracts from washed ants significantly inhibited the apple brown rot (Monilinia fructigena) while yielding the growth of other microbes. Furthermore, all investigated wood ants transferred microorganisms to their surroundings within 10 s when walking across a surface. We isolated the most dominant microorganisms deposited by walking ants and from washed ant extracts (i.e., strains likely found on the surface of ants), resulting in four bacterial cultures and one yeast. Two of these isolates, strain I3 (most closely related to Pseudomonas sichuanensis and P. entomophila) and strain I1b (most closely related to Bacillus mycoides), showed inhibitory effects against apple brown rot and apple scab (Venturia inaequalis), while strain I3 also inhibited gray mold (Botrytis cinerea) and Fusarium head blight (Fusarium graminearum). These results suggest that wood ants have potential as biological control agents against commercially relevant plant pathogens, and that their inhibitory effect might be at least partially caused by antibiotic compounds produced by their associated microorganisms.
期刊介绍:
The journal Microbial Ecology was founded more than 50 years ago by Dr. Ralph Mitchell, Gordon McKay Professor of Applied Biology at Harvard University in Cambridge, MA. The journal has evolved to become a premier location for the presentation of manuscripts that represent advances in the field of microbial ecology. The journal has become a dedicated international forum for the presentation of high-quality scientific investigations of how microorganisms interact with their environment, with each other and with their hosts. Microbial Ecology offers articles of original research in full paper and note formats, as well as brief reviews and topical position papers.