Lucynda Pham, Tasnim Arroum, Junmei Wan, Lauren Pavelich, Jamie Bell, Paul T Morse, Icksoo Lee, Lawrence I Grossman, Thomas H Sanderson, Moh H Malek, Maik Hüttemann
{"title":"在健康和疾病中通过严格控制细胞色素 c 氧化酶调节线粒体氧化磷酸化--对缺血/再灌注损伤、炎症性疾病、糖尿病和癌症的影响。","authors":"Lucynda Pham, Tasnim Arroum, Junmei Wan, Lauren Pavelich, Jamie Bell, Paul T Morse, Icksoo Lee, Lawrence I Grossman, Thomas H Sanderson, Moh H Malek, Maik Hüttemann","doi":"10.1016/j.redox.2024.103426","DOIUrl":null,"url":null,"abstract":"<p><p>Mitochondria are essential to cellular function as they generate the majority of cellular ATP, mediated through oxidative phosphorylation, which couples proton pumping of the electron transport chain (ETC) to ATP production. The ETC generates an electrochemical gradient, known as the proton motive force, consisting of the mitochondrial membrane potential (ΔΨ<sub>m</sub>, the major component in mammals) and ΔpH across the inner mitochondrial membrane. Both ATP production and reactive oxygen species (ROS) are linked to ΔΨ<sub>m</sub>, and it has been shown that an imbalance in ΔΨ<sub>m</sub> beyond the physiological optimal intermediate range results in excessive ROS production. The reaction of cytochrome c oxidase (COX) of the ETC with its small electron donor cytochrome c (Cytc) is the proposed rate-limiting step in mammals under physiological conditions. The rate at which this redox reaction occurs controls ΔΨ<sub>m</sub> and thus ATP and ROS production. Multiple mechanisms are in place that regulate this reaction to meet the cell's energy demand and respond to acute stress. COX and Cytc have been shown to be regulated by all three main mechanisms, which we discuss in detail: allosteric regulation, tissue-specific isoforms, and post-translational modifications for which we provide a comprehensive catalog and discussion of their functional role with 55 and 50 identified phosphorylation and acetylation sites on COX, respectively. Disruption of these regulatory mechanisms has been found in several common human diseases, including stroke and myocardial infarction, inflammation including sepsis, and diabetes, where changes in COX or Cytc phosphorylation lead to mitochondrial dysfunction contributing to disease pathophysiology. Identification and subsequent targeting of the underlying signaling pathways holds clear promise for future interventions to improve human health. An example intervention is the recently discovered noninvasive COX-inhibitory infrared light therapy that holds promise to transform the current standard of clinical care in disease conditions where COX regulation has gone awry.</p>","PeriodicalId":20998,"journal":{"name":"Redox Biology","volume":"78 ","pages":"103426"},"PeriodicalIF":10.7000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulation of mitochondrial oxidative phosphorylation through tight control of cytochrome c oxidase in health and disease - Implications for ischemia/reperfusion injury, inflammatory diseases, diabetes, and cancer.\",\"authors\":\"Lucynda Pham, Tasnim Arroum, Junmei Wan, Lauren Pavelich, Jamie Bell, Paul T Morse, Icksoo Lee, Lawrence I Grossman, Thomas H Sanderson, Moh H Malek, Maik Hüttemann\",\"doi\":\"10.1016/j.redox.2024.103426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mitochondria are essential to cellular function as they generate the majority of cellular ATP, mediated through oxidative phosphorylation, which couples proton pumping of the electron transport chain (ETC) to ATP production. The ETC generates an electrochemical gradient, known as the proton motive force, consisting of the mitochondrial membrane potential (ΔΨ<sub>m</sub>, the major component in mammals) and ΔpH across the inner mitochondrial membrane. Both ATP production and reactive oxygen species (ROS) are linked to ΔΨ<sub>m</sub>, and it has been shown that an imbalance in ΔΨ<sub>m</sub> beyond the physiological optimal intermediate range results in excessive ROS production. The reaction of cytochrome c oxidase (COX) of the ETC with its small electron donor cytochrome c (Cytc) is the proposed rate-limiting step in mammals under physiological conditions. The rate at which this redox reaction occurs controls ΔΨ<sub>m</sub> and thus ATP and ROS production. Multiple mechanisms are in place that regulate this reaction to meet the cell's energy demand and respond to acute stress. COX and Cytc have been shown to be regulated by all three main mechanisms, which we discuss in detail: allosteric regulation, tissue-specific isoforms, and post-translational modifications for which we provide a comprehensive catalog and discussion of their functional role with 55 and 50 identified phosphorylation and acetylation sites on COX, respectively. Disruption of these regulatory mechanisms has been found in several common human diseases, including stroke and myocardial infarction, inflammation including sepsis, and diabetes, where changes in COX or Cytc phosphorylation lead to mitochondrial dysfunction contributing to disease pathophysiology. Identification and subsequent targeting of the underlying signaling pathways holds clear promise for future interventions to improve human health. An example intervention is the recently discovered noninvasive COX-inhibitory infrared light therapy that holds promise to transform the current standard of clinical care in disease conditions where COX regulation has gone awry.</p>\",\"PeriodicalId\":20998,\"journal\":{\"name\":\"Redox Biology\",\"volume\":\"78 \",\"pages\":\"103426\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Redox Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.redox.2024.103426\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Redox Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.redox.2024.103426","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Regulation of mitochondrial oxidative phosphorylation through tight control of cytochrome c oxidase in health and disease - Implications for ischemia/reperfusion injury, inflammatory diseases, diabetes, and cancer.
Mitochondria are essential to cellular function as they generate the majority of cellular ATP, mediated through oxidative phosphorylation, which couples proton pumping of the electron transport chain (ETC) to ATP production. The ETC generates an electrochemical gradient, known as the proton motive force, consisting of the mitochondrial membrane potential (ΔΨm, the major component in mammals) and ΔpH across the inner mitochondrial membrane. Both ATP production and reactive oxygen species (ROS) are linked to ΔΨm, and it has been shown that an imbalance in ΔΨm beyond the physiological optimal intermediate range results in excessive ROS production. The reaction of cytochrome c oxidase (COX) of the ETC with its small electron donor cytochrome c (Cytc) is the proposed rate-limiting step in mammals under physiological conditions. The rate at which this redox reaction occurs controls ΔΨm and thus ATP and ROS production. Multiple mechanisms are in place that regulate this reaction to meet the cell's energy demand and respond to acute stress. COX and Cytc have been shown to be regulated by all three main mechanisms, which we discuss in detail: allosteric regulation, tissue-specific isoforms, and post-translational modifications for which we provide a comprehensive catalog and discussion of their functional role with 55 and 50 identified phosphorylation and acetylation sites on COX, respectively. Disruption of these regulatory mechanisms has been found in several common human diseases, including stroke and myocardial infarction, inflammation including sepsis, and diabetes, where changes in COX or Cytc phosphorylation lead to mitochondrial dysfunction contributing to disease pathophysiology. Identification and subsequent targeting of the underlying signaling pathways holds clear promise for future interventions to improve human health. An example intervention is the recently discovered noninvasive COX-inhibitory infrared light therapy that holds promise to transform the current standard of clinical care in disease conditions where COX regulation has gone awry.
期刊介绍:
Redox Biology is the official journal of the Society for Redox Biology and Medicine and the Society for Free Radical Research-Europe. It is also affiliated with the International Society for Free Radical Research (SFRRI). This journal serves as a platform for publishing pioneering research, innovative methods, and comprehensive review articles in the field of redox biology, encompassing both health and disease.
Redox Biology welcomes various forms of contributions, including research articles (short or full communications), methods, mini-reviews, and commentaries. Through its diverse range of published content, Redox Biology aims to foster advancements and insights in the understanding of redox biology and its implications.