Shubham Garg , Aniket Jana , Sanju Gupta , Mohammad Umar Arshi , Prabir Kumar Gharai , Juhee Khan , Rajsekhar Roy , Surajit Ghosh
{"title":"发现基于没食子酸的线粒体抗氧化剂可减轻 LPS 诱导的神经炎症","authors":"Shubham Garg , Aniket Jana , Sanju Gupta , Mohammad Umar Arshi , Prabir Kumar Gharai , Juhee Khan , Rajsekhar Roy , Surajit Ghosh","doi":"10.1016/j.freeradbiomed.2024.11.020","DOIUrl":null,"url":null,"abstract":"<div><div>Mitochondria are complex organelle that plays a pivotal role in energy metabolism, regulation of stress responses, and also serve as a major hub for biosynthetic processes. In addition to their well-established function in cellular energetics, it also serves as the primary site for the origin of intracellular reactive oxygen species (ROS), which function as signaling molecules and can lead to oxidative stress when generated in excess. Moreover, mitochondrial dysfunction is one of the leading cause of neuroinflammation. In this regard, we have rationally designed a triazine derived mitochondriotropic antioxidants (Mito-TBA), based on gallic acid and triphenylphosphonium (TPP) cation to specifically target mitochondria to mitigate neuroinflammation. <em>In vitro</em> Mito-TBA-3 inhibits mitoautophagy, offers neuroprotection by inhibiting the LPS induced TLR-4 activation and activating the Nrf-2/ARE pathway in PC-12 derived neurons. <em>In vivo</em> Mito-TBA-3 rescue memory deficit, reversed depression like behavior, inhibited neuroinflammation, and decreased proinflammatory cytokines in LPS induced neuroinflammation rat model. Overall, based on biophysical, <em>in vitro</em> and <em>in vivo</em> analysis, Mito-TBA-3 offers valuable insights as a potent therapeutic lead molecule to combat neurodegeneration even outperforming a well-known non-steroidal anti-inflammatory drug (Aspirin), it also has the potential to use as a promising therapeutic candidate for other mitochondrial oxidative stress related disorders.</div></div>","PeriodicalId":12407,"journal":{"name":"Free Radical Biology and Medicine","volume":"226 ","pages":"Pages 302-329"},"PeriodicalIF":7.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discovery of gallic acid-based mitochondriotropic antioxidant attenuates LPS-induced neuroinflammation\",\"authors\":\"Shubham Garg , Aniket Jana , Sanju Gupta , Mohammad Umar Arshi , Prabir Kumar Gharai , Juhee Khan , Rajsekhar Roy , Surajit Ghosh\",\"doi\":\"10.1016/j.freeradbiomed.2024.11.020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Mitochondria are complex organelle that plays a pivotal role in energy metabolism, regulation of stress responses, and also serve as a major hub for biosynthetic processes. In addition to their well-established function in cellular energetics, it also serves as the primary site for the origin of intracellular reactive oxygen species (ROS), which function as signaling molecules and can lead to oxidative stress when generated in excess. Moreover, mitochondrial dysfunction is one of the leading cause of neuroinflammation. In this regard, we have rationally designed a triazine derived mitochondriotropic antioxidants (Mito-TBA), based on gallic acid and triphenylphosphonium (TPP) cation to specifically target mitochondria to mitigate neuroinflammation. <em>In vitro</em> Mito-TBA-3 inhibits mitoautophagy, offers neuroprotection by inhibiting the LPS induced TLR-4 activation and activating the Nrf-2/ARE pathway in PC-12 derived neurons. <em>In vivo</em> Mito-TBA-3 rescue memory deficit, reversed depression like behavior, inhibited neuroinflammation, and decreased proinflammatory cytokines in LPS induced neuroinflammation rat model. Overall, based on biophysical, <em>in vitro</em> and <em>in vivo</em> analysis, Mito-TBA-3 offers valuable insights as a potent therapeutic lead molecule to combat neurodegeneration even outperforming a well-known non-steroidal anti-inflammatory drug (Aspirin), it also has the potential to use as a promising therapeutic candidate for other mitochondrial oxidative stress related disorders.</div></div>\",\"PeriodicalId\":12407,\"journal\":{\"name\":\"Free Radical Biology and Medicine\",\"volume\":\"226 \",\"pages\":\"Pages 302-329\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Free Radical Biology and Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0891584924010542\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free Radical Biology and Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0891584924010542","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Discovery of gallic acid-based mitochondriotropic antioxidant attenuates LPS-induced neuroinflammation
Mitochondria are complex organelle that plays a pivotal role in energy metabolism, regulation of stress responses, and also serve as a major hub for biosynthetic processes. In addition to their well-established function in cellular energetics, it also serves as the primary site for the origin of intracellular reactive oxygen species (ROS), which function as signaling molecules and can lead to oxidative stress when generated in excess. Moreover, mitochondrial dysfunction is one of the leading cause of neuroinflammation. In this regard, we have rationally designed a triazine derived mitochondriotropic antioxidants (Mito-TBA), based on gallic acid and triphenylphosphonium (TPP) cation to specifically target mitochondria to mitigate neuroinflammation. In vitro Mito-TBA-3 inhibits mitoautophagy, offers neuroprotection by inhibiting the LPS induced TLR-4 activation and activating the Nrf-2/ARE pathway in PC-12 derived neurons. In vivo Mito-TBA-3 rescue memory deficit, reversed depression like behavior, inhibited neuroinflammation, and decreased proinflammatory cytokines in LPS induced neuroinflammation rat model. Overall, based on biophysical, in vitro and in vivo analysis, Mito-TBA-3 offers valuable insights as a potent therapeutic lead molecule to combat neurodegeneration even outperforming a well-known non-steroidal anti-inflammatory drug (Aspirin), it also has the potential to use as a promising therapeutic candidate for other mitochondrial oxidative stress related disorders.
期刊介绍:
Free Radical Biology and Medicine is a leading journal in the field of redox biology, which is the study of the role of reactive oxygen species (ROS) and other oxidizing agents in biological systems. The journal serves as a premier forum for publishing innovative and groundbreaking research that explores the redox biology of health and disease, covering a wide range of topics and disciplines. Free Radical Biology and Medicine also commissions Special Issues that highlight recent advances in both basic and clinical research, with a particular emphasis on the mechanisms underlying altered metabolism and redox signaling. These Special Issues aim to provide a focused platform for the latest research in the field, fostering collaboration and knowledge exchange among researchers and clinicians.