Erin Conley, Caryn S Wadler, Bailey A Bell, Ivy Lucier, Caroline Haynie, Sophie Eldred, Valerie Nguyen, Tim S Bugni, Michael G Thomas
{"title":"腺苷酸化域的定向进化改变了大肠杆菌的底物特异性并产生了一种新的儿茶酚苷元。","authors":"Erin Conley, Caryn S Wadler, Bailey A Bell, Ivy Lucier, Caroline Haynie, Sophie Eldred, Valerie Nguyen, Tim S Bugni, Michael G Thomas","doi":"10.1021/acs.biochem.4c00499","DOIUrl":null,"url":null,"abstract":"<p><p>Nonribosomal peptide synthetases (NRPS) biosynthesize numerous natural products with therapeutic, agricultural, and industrial significance. Reliably altering substrate selection in these enzymes has been a longstanding goal, as this would enable the production of tailor-made peptides with desired activities. In this study, the NRPS EntF and the associated biosynthesis of the siderophore enterobactin (ENT) were used as a model system to interrogate substrate selection by an adenylation (A) domain. We employed a directed evolution pipeline that harnesses an <i>in vivo</i> genetic selection for siderophore production to alter A domain substrate selection. Surprisingly, this led to the formation of a new, physiologically active catechol siderophore in <i>Escherichia coli</i>. We characterized the enzyme variants <i>in vitro</i> and demonstrated transferability of our findings to the well-studied TycC and GrsB NRPSs. This work identifies critical binding pocket residues that allow for altered substrate selection in our model system and expands upon our understanding of iron acquisition in <i>E. coli</i>.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Directed Evolution of an Adenylation Domain Alters Substrate Specificity and Generates a New Catechol Siderophore in <i>Escherichia coli</i>.\",\"authors\":\"Erin Conley, Caryn S Wadler, Bailey A Bell, Ivy Lucier, Caroline Haynie, Sophie Eldred, Valerie Nguyen, Tim S Bugni, Michael G Thomas\",\"doi\":\"10.1021/acs.biochem.4c00499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Nonribosomal peptide synthetases (NRPS) biosynthesize numerous natural products with therapeutic, agricultural, and industrial significance. Reliably altering substrate selection in these enzymes has been a longstanding goal, as this would enable the production of tailor-made peptides with desired activities. In this study, the NRPS EntF and the associated biosynthesis of the siderophore enterobactin (ENT) were used as a model system to interrogate substrate selection by an adenylation (A) domain. We employed a directed evolution pipeline that harnesses an <i>in vivo</i> genetic selection for siderophore production to alter A domain substrate selection. Surprisingly, this led to the formation of a new, physiologically active catechol siderophore in <i>Escherichia coli</i>. We characterized the enzyme variants <i>in vitro</i> and demonstrated transferability of our findings to the well-studied TycC and GrsB NRPSs. This work identifies critical binding pocket residues that allow for altered substrate selection in our model system and expands upon our understanding of iron acquisition in <i>E. coli</i>.</p>\",\"PeriodicalId\":28,\"journal\":{\"name\":\"Biochemistry Biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry Biochemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.biochem.4c00499\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00499","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Directed Evolution of an Adenylation Domain Alters Substrate Specificity and Generates a New Catechol Siderophore in Escherichia coli.
Nonribosomal peptide synthetases (NRPS) biosynthesize numerous natural products with therapeutic, agricultural, and industrial significance. Reliably altering substrate selection in these enzymes has been a longstanding goal, as this would enable the production of tailor-made peptides with desired activities. In this study, the NRPS EntF and the associated biosynthesis of the siderophore enterobactin (ENT) were used as a model system to interrogate substrate selection by an adenylation (A) domain. We employed a directed evolution pipeline that harnesses an in vivo genetic selection for siderophore production to alter A domain substrate selection. Surprisingly, this led to the formation of a new, physiologically active catechol siderophore in Escherichia coli. We characterized the enzyme variants in vitro and demonstrated transferability of our findings to the well-studied TycC and GrsB NRPSs. This work identifies critical binding pocket residues that allow for altered substrate selection in our model system and expands upon our understanding of iron acquisition in E. coli.
期刊介绍:
Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.