Koji Asano, Kazuto Yoshimi, Kohei Takeshita, Satomi Mitsuhashi, Yuta Kochi, Rika Hirano, Zong Tingyu, Saeko Ishida, Tomoji Mashimo
{"title":"用于定量和快速诊断肌营养不良 1 型重复扩增症的 CRISPR 诊断技术。","authors":"Koji Asano, Kazuto Yoshimi, Kohei Takeshita, Satomi Mitsuhashi, Yuta Kochi, Rika Hirano, Zong Tingyu, Saeko Ishida, Tomoji Mashimo","doi":"10.1021/acssynbio.4c00265","DOIUrl":null,"url":null,"abstract":"<p><p>Repeat expansion disorders, exemplified by myotonic dystrophy type 1 (DM1), present challenges in diagnostic quantification because of the variability and complexity of repeat lengths. Traditional diagnostic methods, including PCR and Southern blotting, exhibit limitations in sensitivity and specificity, necessitating the development of innovative approaches for precise and rapid diagnosis. Here, we introduce a CRISPR-based diagnostic method, REPLICA (<u>re</u>peat-<u>p</u>rimed <u>l</u>ocating of <u>i</u>nherited disease by <u>Ca</u>s3), for the quantification and rapid diagnosis of DM1. This method, using in vitro-assembled CRISPR-Cas3, demonstrates superior sensitivity and specificity in quantifying CTG repeat expansion lengths, correlated with disease severity. We also validate the robustness and accuracy of CRISPR diagnostics in quantitatively diagnosing DM1 using patient genomes. Furthermore, we optimize a REPLICA-based assay for point-of-care-testing using lateral flow test strips, facilitating rapid screening and detection. In summary, REPLICA-based CRISPR diagnostics offer precise and rapid detection of repeat expansion disorders, promising personalized treatment strategies.</p>","PeriodicalId":26,"journal":{"name":"ACS Synthetic Biology","volume":" ","pages":"3926-3935"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CRISPR Diagnostics for Quantification and Rapid Diagnosis of Myotonic Dystrophy Type 1 Repeat Expansion Disorders.\",\"authors\":\"Koji Asano, Kazuto Yoshimi, Kohei Takeshita, Satomi Mitsuhashi, Yuta Kochi, Rika Hirano, Zong Tingyu, Saeko Ishida, Tomoji Mashimo\",\"doi\":\"10.1021/acssynbio.4c00265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Repeat expansion disorders, exemplified by myotonic dystrophy type 1 (DM1), present challenges in diagnostic quantification because of the variability and complexity of repeat lengths. Traditional diagnostic methods, including PCR and Southern blotting, exhibit limitations in sensitivity and specificity, necessitating the development of innovative approaches for precise and rapid diagnosis. Here, we introduce a CRISPR-based diagnostic method, REPLICA (<u>re</u>peat-<u>p</u>rimed <u>l</u>ocating of <u>i</u>nherited disease by <u>Ca</u>s3), for the quantification and rapid diagnosis of DM1. This method, using in vitro-assembled CRISPR-Cas3, demonstrates superior sensitivity and specificity in quantifying CTG repeat expansion lengths, correlated with disease severity. We also validate the robustness and accuracy of CRISPR diagnostics in quantitatively diagnosing DM1 using patient genomes. Furthermore, we optimize a REPLICA-based assay for point-of-care-testing using lateral flow test strips, facilitating rapid screening and detection. In summary, REPLICA-based CRISPR diagnostics offer precise and rapid detection of repeat expansion disorders, promising personalized treatment strategies.</p>\",\"PeriodicalId\":26,\"journal\":{\"name\":\"ACS Synthetic Biology\",\"volume\":\" \",\"pages\":\"3926-3935\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Synthetic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1021/acssynbio.4c00265\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Synthetic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acssynbio.4c00265","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
CRISPR Diagnostics for Quantification and Rapid Diagnosis of Myotonic Dystrophy Type 1 Repeat Expansion Disorders.
Repeat expansion disorders, exemplified by myotonic dystrophy type 1 (DM1), present challenges in diagnostic quantification because of the variability and complexity of repeat lengths. Traditional diagnostic methods, including PCR and Southern blotting, exhibit limitations in sensitivity and specificity, necessitating the development of innovative approaches for precise and rapid diagnosis. Here, we introduce a CRISPR-based diagnostic method, REPLICA (repeat-primed locating of inherited disease by Cas3), for the quantification and rapid diagnosis of DM1. This method, using in vitro-assembled CRISPR-Cas3, demonstrates superior sensitivity and specificity in quantifying CTG repeat expansion lengths, correlated with disease severity. We also validate the robustness and accuracy of CRISPR diagnostics in quantitatively diagnosing DM1 using patient genomes. Furthermore, we optimize a REPLICA-based assay for point-of-care-testing using lateral flow test strips, facilitating rapid screening and detection. In summary, REPLICA-based CRISPR diagnostics offer precise and rapid detection of repeat expansion disorders, promising personalized treatment strategies.
期刊介绍:
The journal is particularly interested in studies on the design and synthesis of new genetic circuits and gene products; computational methods in the design of systems; and integrative applied approaches to understanding disease and metabolism.
Topics may include, but are not limited to:
Design and optimization of genetic systems
Genetic circuit design and their principles for their organization into programs
Computational methods to aid the design of genetic systems
Experimental methods to quantify genetic parts, circuits, and metabolic fluxes
Genetic parts libraries: their creation, analysis, and ontological representation
Protein engineering including computational design
Metabolic engineering and cellular manufacturing, including biomass conversion
Natural product access, engineering, and production
Creative and innovative applications of cellular programming
Medical applications, tissue engineering, and the programming of therapeutic cells
Minimal cell design and construction
Genomics and genome replacement strategies
Viral engineering
Automated and robotic assembly platforms for synthetic biology
DNA synthesis methodologies
Metagenomics and synthetic metagenomic analysis
Bioinformatics applied to gene discovery, chemoinformatics, and pathway construction
Gene optimization
Methods for genome-scale measurements of transcription and metabolomics
Systems biology and methods to integrate multiple data sources
in vitro and cell-free synthetic biology and molecular programming
Nucleic acid engineering.