Ziwei Zhang, Xuefeng Cai, Minbo Zhang, Wuxiong Chen, Yijie Chen, Pu Wang
{"title":"用于单侧膝关节外骨骼主动控制的实时步态意图识别。","authors":"Ziwei Zhang, Xuefeng Cai, Minbo Zhang, Wuxiong Chen, Yijie Chen, Pu Wang","doi":"10.1155/2024/9426782","DOIUrl":null,"url":null,"abstract":"<p><p>Real-time gait estimation is important for the synchrony control of robotic exoskeleton to provide walking assistance. However, for stroke patients with hemiplegic paralysis, the gait pattern is very complex. Accurate and timely gait intention recognition is therefore difficult. To achieve human-robot synchrony control for an unilateral knee exoskeleton, a gait intention recognizer coupling the adaptive frequency oscillator (AFO) and back propagation neural networks (BPNN) is proposed in this paper. The BPNN is trained with gait data of healthy subjects and stroke patients to improve the accuracy of recognized gait pattern, which is then imported into flexible interaction module to provide appropriate assistance. To evaluate the performance of gait intention recognition, three stroke patients were recruited to conduct level ground walking tests. The kinematic and biomechanical data were captured in each test and processed for the evaluation. Experimental results demonstrate the effectiveness of gait intention recognition and movement assistance.</p>","PeriodicalId":8029,"journal":{"name":"Applied Bionics and Biomechanics","volume":"2024 ","pages":"9426782"},"PeriodicalIF":1.8000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578655/pdf/","citationCount":"0","resultStr":"{\"title\":\"Real-Time Gait Intention Recognition for Active Control of Unilateral Knee Exoskeleton.\",\"authors\":\"Ziwei Zhang, Xuefeng Cai, Minbo Zhang, Wuxiong Chen, Yijie Chen, Pu Wang\",\"doi\":\"10.1155/2024/9426782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Real-time gait estimation is important for the synchrony control of robotic exoskeleton to provide walking assistance. However, for stroke patients with hemiplegic paralysis, the gait pattern is very complex. Accurate and timely gait intention recognition is therefore difficult. To achieve human-robot synchrony control for an unilateral knee exoskeleton, a gait intention recognizer coupling the adaptive frequency oscillator (AFO) and back propagation neural networks (BPNN) is proposed in this paper. The BPNN is trained with gait data of healthy subjects and stroke patients to improve the accuracy of recognized gait pattern, which is then imported into flexible interaction module to provide appropriate assistance. To evaluate the performance of gait intention recognition, three stroke patients were recruited to conduct level ground walking tests. The kinematic and biomechanical data were captured in each test and processed for the evaluation. Experimental results demonstrate the effectiveness of gait intention recognition and movement assistance.</p>\",\"PeriodicalId\":8029,\"journal\":{\"name\":\"Applied Bionics and Biomechanics\",\"volume\":\"2024 \",\"pages\":\"9426782\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11578655/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Bionics and Biomechanics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/9426782\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Bionics and Biomechanics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1155/2024/9426782","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Real-Time Gait Intention Recognition for Active Control of Unilateral Knee Exoskeleton.
Real-time gait estimation is important for the synchrony control of robotic exoskeleton to provide walking assistance. However, for stroke patients with hemiplegic paralysis, the gait pattern is very complex. Accurate and timely gait intention recognition is therefore difficult. To achieve human-robot synchrony control for an unilateral knee exoskeleton, a gait intention recognizer coupling the adaptive frequency oscillator (AFO) and back propagation neural networks (BPNN) is proposed in this paper. The BPNN is trained with gait data of healthy subjects and stroke patients to improve the accuracy of recognized gait pattern, which is then imported into flexible interaction module to provide appropriate assistance. To evaluate the performance of gait intention recognition, three stroke patients were recruited to conduct level ground walking tests. The kinematic and biomechanical data were captured in each test and processed for the evaluation. Experimental results demonstrate the effectiveness of gait intention recognition and movement assistance.
期刊介绍:
Applied Bionics and Biomechanics publishes papers that seek to understand the mechanics of biological systems, or that use the functions of living organisms as inspiration for the design new devices. Such systems may be used as artificial replacements, or aids, for their original biological purpose, or be used in a different setting altogether.