{"title":"Matini-Net:用于特征工程和深度神经网络设计的多功能材料信息学研究框架。","authors":"Myeonghun Lee, Taehyun Park, Kyoungmin Min","doi":"10.1021/acs.jcim.4c01676","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we introduced Matini-Net, which is a versatile framework for feature engineering and automated architecture design for materials informatics research using deep neural networks. Matini-Net provides the flexibility to design feature-based, graph-based, and combinations of these models, accommodating both single- and multimodal model architectures. For validation, we performed a performance evaluation on the MatBench benchmarking dataset of five properties, targeting five types of regression architectures that can be designed using Matini-Net. When applied to each of the five material property datasets, the best model performance for the various architectures exhibited <i>R</i><sup>2</sup> > 0.84. This highlights the usefulness and flexibility of Matini-Net for accelerating materials discovery. Specifically, this framework was developed for researchers with limited experience in deep learning to easily apply it to research through automated feature engineering, hyperparameter tuning, and network construction. Moreover, Matini-Net improves the model interpretability by performing an importance analysis of the selected features. We believe that by employing Matini-Net, machine and deep learning can be applied more easily and effectively in various types of materials research.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":"8770-8783"},"PeriodicalIF":5.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Matini-Net: Versatile Material Informatics Research Framework for Feature Engineering and Deep Neural Network Design.\",\"authors\":\"Myeonghun Lee, Taehyun Park, Kyoungmin Min\",\"doi\":\"10.1021/acs.jcim.4c01676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we introduced Matini-Net, which is a versatile framework for feature engineering and automated architecture design for materials informatics research using deep neural networks. Matini-Net provides the flexibility to design feature-based, graph-based, and combinations of these models, accommodating both single- and multimodal model architectures. For validation, we performed a performance evaluation on the MatBench benchmarking dataset of five properties, targeting five types of regression architectures that can be designed using Matini-Net. When applied to each of the five material property datasets, the best model performance for the various architectures exhibited <i>R</i><sup>2</sup> > 0.84. This highlights the usefulness and flexibility of Matini-Net for accelerating materials discovery. Specifically, this framework was developed for researchers with limited experience in deep learning to easily apply it to research through automated feature engineering, hyperparameter tuning, and network construction. Moreover, Matini-Net improves the model interpretability by performing an importance analysis of the selected features. We believe that by employing Matini-Net, machine and deep learning can be applied more easily and effectively in various types of materials research.</p>\",\"PeriodicalId\":44,\"journal\":{\"name\":\"Journal of Chemical Information and Modeling \",\"volume\":\" \",\"pages\":\"8770-8783\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Chemical Information and Modeling \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.jcim.4c01676\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c01676","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/21 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Matini-Net: Versatile Material Informatics Research Framework for Feature Engineering and Deep Neural Network Design.
In this study, we introduced Matini-Net, which is a versatile framework for feature engineering and automated architecture design for materials informatics research using deep neural networks. Matini-Net provides the flexibility to design feature-based, graph-based, and combinations of these models, accommodating both single- and multimodal model architectures. For validation, we performed a performance evaluation on the MatBench benchmarking dataset of five properties, targeting five types of regression architectures that can be designed using Matini-Net. When applied to each of the five material property datasets, the best model performance for the various architectures exhibited R2 > 0.84. This highlights the usefulness and flexibility of Matini-Net for accelerating materials discovery. Specifically, this framework was developed for researchers with limited experience in deep learning to easily apply it to research through automated feature engineering, hyperparameter tuning, and network construction. Moreover, Matini-Net improves the model interpretability by performing an importance analysis of the selected features. We believe that by employing Matini-Net, machine and deep learning can be applied more easily and effectively in various types of materials research.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.