{"title":"基于物联网的 5G 无线传感器网络采用利用 DCNN 处理的安全路由方法","authors":"Yassine Sabri, Adil Hilmani","doi":"10.1002/ett.70025","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The security principles of the fifth generation (5G) are anticipated to include robust cryptography models, information security models, and machine learning (ML) powered Intrusion Detection Systems (IDS) specifically designed for Internet of Things (IoT) based wireless sensor networks (WSNs). Nevertheless, the existing security models fall short in addressing the dynamic network characteristics of WSNs. In this context, the suggested system introduces a secure and collaborative multi-watchdog system through the implementation of deep convolutional neural network (DCNN) and distributed particle filtering evaluation scheme (DPFES). The proposed system utilizes deep learning (DL) techniques to create a dynamic multi-watchdog system that safeguards each sensor node by monitoring its transmissions. Furthermore, the proposed approach includes secure data-centric and node-centric evaluation methods that are crucial for enhancing the security of 5G-based IoT-WSN networks. The network evaluation processes based on DL facilitate the creation of a secure multi-watchdog system within dense IoT-WSN environments. This system enables the deployment of active watchdog IDS agents as needed. The proposed approach includes various components such as a system dynamics model, cooperative watchdog model, Dual Line Minimum Connected Dominating Set (DL-MCDS), and DL-based event analysis procedures. From a technical perspective, the system is driven by the implementation of DPFES, which utilizes particle filtering frameworks to analyze network events and establish a secure 5G environment. The system has been successfully implemented, and its results have been compared with those of other similar works. The performance of the proposed cooperative multi-watchdog system demonstrates a significant improvement of <span></span><math></math> and <span></span><math></math> compared to other techniques.</p>\n </div>","PeriodicalId":23282,"journal":{"name":"Transactions on Emerging Telecommunications Technologies","volume":"35 12","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An IoT-Based 5G Wireless Sensor Network Employs a Secure Routing Methodology Leveraging DCNN Processing\",\"authors\":\"Yassine Sabri, Adil Hilmani\",\"doi\":\"10.1002/ett.70025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The security principles of the fifth generation (5G) are anticipated to include robust cryptography models, information security models, and machine learning (ML) powered Intrusion Detection Systems (IDS) specifically designed for Internet of Things (IoT) based wireless sensor networks (WSNs). Nevertheless, the existing security models fall short in addressing the dynamic network characteristics of WSNs. In this context, the suggested system introduces a secure and collaborative multi-watchdog system through the implementation of deep convolutional neural network (DCNN) and distributed particle filtering evaluation scheme (DPFES). The proposed system utilizes deep learning (DL) techniques to create a dynamic multi-watchdog system that safeguards each sensor node by monitoring its transmissions. Furthermore, the proposed approach includes secure data-centric and node-centric evaluation methods that are crucial for enhancing the security of 5G-based IoT-WSN networks. The network evaluation processes based on DL facilitate the creation of a secure multi-watchdog system within dense IoT-WSN environments. This system enables the deployment of active watchdog IDS agents as needed. The proposed approach includes various components such as a system dynamics model, cooperative watchdog model, Dual Line Minimum Connected Dominating Set (DL-MCDS), and DL-based event analysis procedures. From a technical perspective, the system is driven by the implementation of DPFES, which utilizes particle filtering frameworks to analyze network events and establish a secure 5G environment. The system has been successfully implemented, and its results have been compared with those of other similar works. The performance of the proposed cooperative multi-watchdog system demonstrates a significant improvement of <span></span><math></math> and <span></span><math></math> compared to other techniques.</p>\\n </div>\",\"PeriodicalId\":23282,\"journal\":{\"name\":\"Transactions on Emerging Telecommunications Technologies\",\"volume\":\"35 12\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions on Emerging Telecommunications Technologies\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ett.70025\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Emerging Telecommunications Technologies","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ett.70025","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
An IoT-Based 5G Wireless Sensor Network Employs a Secure Routing Methodology Leveraging DCNN Processing
The security principles of the fifth generation (5G) are anticipated to include robust cryptography models, information security models, and machine learning (ML) powered Intrusion Detection Systems (IDS) specifically designed for Internet of Things (IoT) based wireless sensor networks (WSNs). Nevertheless, the existing security models fall short in addressing the dynamic network characteristics of WSNs. In this context, the suggested system introduces a secure and collaborative multi-watchdog system through the implementation of deep convolutional neural network (DCNN) and distributed particle filtering evaluation scheme (DPFES). The proposed system utilizes deep learning (DL) techniques to create a dynamic multi-watchdog system that safeguards each sensor node by monitoring its transmissions. Furthermore, the proposed approach includes secure data-centric and node-centric evaluation methods that are crucial for enhancing the security of 5G-based IoT-WSN networks. The network evaluation processes based on DL facilitate the creation of a secure multi-watchdog system within dense IoT-WSN environments. This system enables the deployment of active watchdog IDS agents as needed. The proposed approach includes various components such as a system dynamics model, cooperative watchdog model, Dual Line Minimum Connected Dominating Set (DL-MCDS), and DL-based event analysis procedures. From a technical perspective, the system is driven by the implementation of DPFES, which utilizes particle filtering frameworks to analyze network events and establish a secure 5G environment. The system has been successfully implemented, and its results have been compared with those of other similar works. The performance of the proposed cooperative multi-watchdog system demonstrates a significant improvement of and compared to other techniques.
期刊介绍:
ransactions on Emerging Telecommunications Technologies (ETT), formerly known as European Transactions on Telecommunications (ETT), has the following aims:
- to attract cutting-edge publications from leading researchers and research groups around the world
- to become a highly cited source of timely research findings in emerging fields of telecommunications
- to limit revision and publication cycles to a few months and thus significantly increase attractiveness to publish
- to become the leading journal for publishing the latest developments in telecommunications