日冕磁零点附近的非线性动能阿尔弗文波产生的湍流和混沌结构

IF 1.8 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
Garima Patel, R. Uma, R. P. Sharma
{"title":"日冕磁零点附近的非线性动能阿尔弗文波产生的湍流和混沌结构","authors":"Garima Patel,&nbsp;R. Uma,&nbsp;R. P. Sharma","doi":"10.1007/s10509-024-04380-w","DOIUrl":null,"url":null,"abstract":"<div><p>In the dynamic and complex environment of the solar corona, the interaction between kinetic Alfvén waves (KAWs) and magnetic null points might play a significant role in understanding various plasma processes. Recognizing the potential role of reconnection in coronal heating, our study aims to delve into how different types of null points affect KAW dynamics and ultimately contribute to heating. We investigate the behavior of nonlinear KAWs near the more frequently occurring components-null point with a mean magnetic field in the solar corona. The nonlinearity is attributed to the ponderomotive effects due to density perturbations. We used a three-dimensional model equation that describes the dynamics of KAWs in the presence of components-null point. Numerical methods are employed to solve the model equation for solar coronal parameters. Our simulations reveal that the nonlinear interaction between KAWs and magnetic null points can lead to the generation and amplification of turbulent and chaotic structures. This formation of localized structures, progressively exhibit more chaotic behavior over time, which may efficiently contribute to energy transfer. The power spectrum analysis of these turbulent structures shows a steeper spectrum with a pronounced cascade. Turbulence implies the presence of localized plasma heating, particle acceleration, and magnetic reconnection. These phenomena have significant implications for understanding the energy transport, particle dynamics, and magnetic topology in the solar corona. We also address nonlinearity’s role in promoting turbulence. This research offers insights into the dynamics of nonlinear KAWs near null points in the solar corona, suggesting their potential role in energy transfer and current sheet formation.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"369 11","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Turbulence and chaotic structure generated by nonlinear kinetic Alfvén waves near magnetic null points in solar corona\",\"authors\":\"Garima Patel,&nbsp;R. Uma,&nbsp;R. P. Sharma\",\"doi\":\"10.1007/s10509-024-04380-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the dynamic and complex environment of the solar corona, the interaction between kinetic Alfvén waves (KAWs) and magnetic null points might play a significant role in understanding various plasma processes. Recognizing the potential role of reconnection in coronal heating, our study aims to delve into how different types of null points affect KAW dynamics and ultimately contribute to heating. We investigate the behavior of nonlinear KAWs near the more frequently occurring components-null point with a mean magnetic field in the solar corona. The nonlinearity is attributed to the ponderomotive effects due to density perturbations. We used a three-dimensional model equation that describes the dynamics of KAWs in the presence of components-null point. Numerical methods are employed to solve the model equation for solar coronal parameters. Our simulations reveal that the nonlinear interaction between KAWs and magnetic null points can lead to the generation and amplification of turbulent and chaotic structures. This formation of localized structures, progressively exhibit more chaotic behavior over time, which may efficiently contribute to energy transfer. The power spectrum analysis of these turbulent structures shows a steeper spectrum with a pronounced cascade. Turbulence implies the presence of localized plasma heating, particle acceleration, and magnetic reconnection. These phenomena have significant implications for understanding the energy transport, particle dynamics, and magnetic topology in the solar corona. We also address nonlinearity’s role in promoting turbulence. This research offers insights into the dynamics of nonlinear KAWs near null points in the solar corona, suggesting their potential role in energy transfer and current sheet formation.</p></div>\",\"PeriodicalId\":8644,\"journal\":{\"name\":\"Astrophysics and Space Science\",\"volume\":\"369 11\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Astrophysics and Space Science\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10509-024-04380-w\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-024-04380-w","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在日冕动态复杂的环境中,动能阿尔芬波(KAW)和磁空点之间的相互作用可能在理解各种等离子体过程中发挥重要作用。认识到重联在日冕加热中的潜在作用,我们的研究旨在深入探讨不同类型的空点如何影响 KAW 动态并最终导致加热。我们研究了日冕平均磁场中较常出现的成分空点附近非线性 KAW 的行为。非线性归因于密度扰动引起的思索效应。我们使用了一个三维模型方程来描述 KAWs 在分量-空点情况下的动态。我们采用数值方法来求解太阳日冕参数的模型方程。模拟结果表明,KAWs 和磁空点之间的非线性相互作用会导致湍流和混沌结构的产生和放大。随着时间的推移,这种局部结构的形成会逐渐表现出更加混乱的行为,这可能会有效地促进能量传递。对这些湍流结构的功率谱分析显示,频谱较陡,有明显的级联。湍流意味着局部等离子体加热、粒子加速和磁重联的存在。这些现象对于理解日冕中的能量传输、粒子动力学和磁拓扑具有重要意义。我们还探讨了非线性在促进湍流中的作用。这项研究为日冕空点附近的非线性 KAW 的动力学提供了见解,表明它们在能量传输和电流片形成中的潜在作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Turbulence and chaotic structure generated by nonlinear kinetic Alfvén waves near magnetic null points in solar corona

In the dynamic and complex environment of the solar corona, the interaction between kinetic Alfvén waves (KAWs) and magnetic null points might play a significant role in understanding various plasma processes. Recognizing the potential role of reconnection in coronal heating, our study aims to delve into how different types of null points affect KAW dynamics and ultimately contribute to heating. We investigate the behavior of nonlinear KAWs near the more frequently occurring components-null point with a mean magnetic field in the solar corona. The nonlinearity is attributed to the ponderomotive effects due to density perturbations. We used a three-dimensional model equation that describes the dynamics of KAWs in the presence of components-null point. Numerical methods are employed to solve the model equation for solar coronal parameters. Our simulations reveal that the nonlinear interaction between KAWs and magnetic null points can lead to the generation and amplification of turbulent and chaotic structures. This formation of localized structures, progressively exhibit more chaotic behavior over time, which may efficiently contribute to energy transfer. The power spectrum analysis of these turbulent structures shows a steeper spectrum with a pronounced cascade. Turbulence implies the presence of localized plasma heating, particle acceleration, and magnetic reconnection. These phenomena have significant implications for understanding the energy transport, particle dynamics, and magnetic topology in the solar corona. We also address nonlinearity’s role in promoting turbulence. This research offers insights into the dynamics of nonlinear KAWs near null points in the solar corona, suggesting their potential role in energy transfer and current sheet formation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Astrophysics and Space Science
Astrophysics and Space Science 地学天文-天文与天体物理
CiteScore
3.40
自引率
5.30%
发文量
106
审稿时长
2-4 weeks
期刊介绍: Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered. The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing. Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信