被动标量中的规范增长、非唯一性和异常耗散

IF 2.6 1区 数学 Q1 MATHEMATICS, APPLIED
Tarek M. Elgindi, Kyle Liss
{"title":"被动标量中的规范增长、非唯一性和异常耗散","authors":"Tarek M. Elgindi,&nbsp;Kyle Liss","doi":"10.1007/s00205-024-02056-x","DOIUrl":null,"url":null,"abstract":"<div><p>We construct a divergence-free velocity field <span>\\(u:[0,T] \\times \\mathbb {T}^2 \\rightarrow \\mathbb {R}^2\\)</span> satisfying </p><div><div><span>$$u \\in C^\\infty ([0,T];C^\\alpha (\\mathbb {T}^2)) \\quad \\forall \\alpha \\in [0,1)$$</span></div></div><p>such that the corresponding drift-diffusion equation exhibits anomalous dissipation for all smooth initial data. We also show that, given any <span>\\(\\alpha _0 &lt; 1\\)</span>, the flow can be modified such that it is uniformly bounded only in <span>\\(C^{\\alpha _0}(\\mathbb {T}^2)\\)</span> and the regularity of solutions satisfy sharp (time-integrated) bounds predicted by the Obukhov–Corrsin theory. The proof is based on a general principle implying <span>\\(H^1\\)</span> growth for all solutions to the transport equation, which may be of independent interest.</p></div>","PeriodicalId":55484,"journal":{"name":"Archive for Rational Mechanics and Analysis","volume":"248 6","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Norm Growth, Non-uniqueness, and Anomalous Dissipation in Passive Scalars\",\"authors\":\"Tarek M. Elgindi,&nbsp;Kyle Liss\",\"doi\":\"10.1007/s00205-024-02056-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We construct a divergence-free velocity field <span>\\\\(u:[0,T] \\\\times \\\\mathbb {T}^2 \\\\rightarrow \\\\mathbb {R}^2\\\\)</span> satisfying </p><div><div><span>$$u \\\\in C^\\\\infty ([0,T];C^\\\\alpha (\\\\mathbb {T}^2)) \\\\quad \\\\forall \\\\alpha \\\\in [0,1)$$</span></div></div><p>such that the corresponding drift-diffusion equation exhibits anomalous dissipation for all smooth initial data. We also show that, given any <span>\\\\(\\\\alpha _0 &lt; 1\\\\)</span>, the flow can be modified such that it is uniformly bounded only in <span>\\\\(C^{\\\\alpha _0}(\\\\mathbb {T}^2)\\\\)</span> and the regularity of solutions satisfy sharp (time-integrated) bounds predicted by the Obukhov–Corrsin theory. The proof is based on a general principle implying <span>\\\\(H^1\\\\)</span> growth for all solutions to the transport equation, which may be of independent interest.</p></div>\",\"PeriodicalId\":55484,\"journal\":{\"name\":\"Archive for Rational Mechanics and Analysis\",\"volume\":\"248 6\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Rational Mechanics and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00205-024-02056-x\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Rational Mechanics and Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00205-024-02056-x","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们构造了一个无发散速度场(u: [0,T] \times \mathbb {T}^2 \rightarrow \mathbb {R}^2),满足 $$u \in C^\infty ([0,T];C^\alpha (\mathbb {T}^2))\quad \forall \alpha \in [0,1)$$ 因此相应的漂移扩散方程在所有平滑初始数据下都表现出异常耗散。我们还证明,给定任意 \(\alpha _0 < 1\), 流可以被修改,使得它只在\(C^{\alpha _0}(\mathbb {T}^2)\)中均匀有界,并且解的正则性满足奥布霍夫-科尔辛理论预测的尖锐(时间积分)边界。证明基于一个一般原理,它意味着传输方程所有解的\(H^1\)增长,这可能会引起独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Norm Growth, Non-uniqueness, and Anomalous Dissipation in Passive Scalars

We construct a divergence-free velocity field \(u:[0,T] \times \mathbb {T}^2 \rightarrow \mathbb {R}^2\) satisfying

$$u \in C^\infty ([0,T];C^\alpha (\mathbb {T}^2)) \quad \forall \alpha \in [0,1)$$

such that the corresponding drift-diffusion equation exhibits anomalous dissipation for all smooth initial data. We also show that, given any \(\alpha _0 < 1\), the flow can be modified such that it is uniformly bounded only in \(C^{\alpha _0}(\mathbb {T}^2)\) and the regularity of solutions satisfy sharp (time-integrated) bounds predicted by the Obukhov–Corrsin theory. The proof is based on a general principle implying \(H^1\) growth for all solutions to the transport equation, which may be of independent interest.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
8.00%
发文量
98
审稿时长
4-8 weeks
期刊介绍: The Archive for Rational Mechanics and Analysis nourishes the discipline of mechanics as a deductive, mathematical science in the classical tradition and promotes analysis, particularly in the context of application. Its purpose is to give rapid and full publication to research of exceptional moment, depth and permanence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信