电离层-大气层-岩石圈系统中的电磁触发效应及其在短期地震预报中的可能用途

IF 0.9 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS
V. A. Novikov, V. M. Sorokin
{"title":"电离层-大气层-岩石圈系统中的电磁触发效应及其在短期地震预报中的可能用途","authors":"V. A. Novikov,&nbsp;V. M. Sorokin","doi":"10.1134/S1069351324700800","DOIUrl":null,"url":null,"abstract":"<p>Previously conducted numerical studies of the influence of class X solar flares on seismic activity have shown that the absorption of X-ray radiation from a solar flare in the ionosphere can cause pulsations of the geomagnetic field up to 100 nT and the corresponding generation of telluric currents in faults in the Earth’s crust with a density of up to 10<sup>–6</sup> A/m<sup>2</sup>, which is comparable to the current density created in the Earth’s crust by artificial pulse sources and leading to the initiation of weak earthquakes in the Pamirs and Northern Tien Shan. To verify these numerical results, an analysis was conducted of the possible impact of the 50 strongest class X flares (1997–2023) on both global seismic activity and earthquake-preparation zones located only on the illuminated part of the globe. The method of superimposing epochs has established an increase in number of earthquakes <i>M</i> ≥ 4.5 within 10 days after a solar flare, especially in the area with a radius of 5000 km around the subsolar point (up to 68% for flare class &gt;X5), compared to the same period before it. Analysis of aftershock activity of the strong Sumatra–Andaman earthquake (<i>M</i> = 9.1, December 26, 2004) showed that the number of aftershocks with magnitude <i>M</i> ≥ 2.5 increased more than 17 times after the X10.1 class solar flare (January 20, 2005) with a delay of 7–8 days. In addition, it has been shown that solar flares of class X2.3 and <i>M</i>3.64, which occurred after the Darfield earthquake (<i>M</i> = 7.1, September 3, 2010, New Zealand), in the area of subsolar points of which the aftershock zone was located, probably caused three strong aftershocks (<i>M</i>6.3, <i>M</i>5.2, and <i>M</i>5.9) with the same delay of 6 days on the Port Hills fault, which is the most sensitive to external electromagnetic influences in terms of its electrical conductivity and orientation. Taking into account the concept of earthquake forecasting based on trigger effects proposed by G.A. Sobolev, the possibility is discussed of using the obtained results for short-term forecasting as additional information along with known precursors.</p>","PeriodicalId":602,"journal":{"name":"Izvestiya, Physics of the Solid Earth","volume":"60 5","pages":"879 - 890"},"PeriodicalIF":0.9000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electromagnetic Trigger Effects in the Ionosphere–Atmosphere–Lithosphere System and Their Possible Use for Short-Term Earthquake Forecasting\",\"authors\":\"V. A. Novikov,&nbsp;V. M. Sorokin\",\"doi\":\"10.1134/S1069351324700800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Previously conducted numerical studies of the influence of class X solar flares on seismic activity have shown that the absorption of X-ray radiation from a solar flare in the ionosphere can cause pulsations of the geomagnetic field up to 100 nT and the corresponding generation of telluric currents in faults in the Earth’s crust with a density of up to 10<sup>–6</sup> A/m<sup>2</sup>, which is comparable to the current density created in the Earth’s crust by artificial pulse sources and leading to the initiation of weak earthquakes in the Pamirs and Northern Tien Shan. To verify these numerical results, an analysis was conducted of the possible impact of the 50 strongest class X flares (1997–2023) on both global seismic activity and earthquake-preparation zones located only on the illuminated part of the globe. The method of superimposing epochs has established an increase in number of earthquakes <i>M</i> ≥ 4.5 within 10 days after a solar flare, especially in the area with a radius of 5000 km around the subsolar point (up to 68% for flare class &gt;X5), compared to the same period before it. Analysis of aftershock activity of the strong Sumatra–Andaman earthquake (<i>M</i> = 9.1, December 26, 2004) showed that the number of aftershocks with magnitude <i>M</i> ≥ 2.5 increased more than 17 times after the X10.1 class solar flare (January 20, 2005) with a delay of 7–8 days. In addition, it has been shown that solar flares of class X2.3 and <i>M</i>3.64, which occurred after the Darfield earthquake (<i>M</i> = 7.1, September 3, 2010, New Zealand), in the area of subsolar points of which the aftershock zone was located, probably caused three strong aftershocks (<i>M</i>6.3, <i>M</i>5.2, and <i>M</i>5.9) with the same delay of 6 days on the Port Hills fault, which is the most sensitive to external electromagnetic influences in terms of its electrical conductivity and orientation. Taking into account the concept of earthquake forecasting based on trigger effects proposed by G.A. Sobolev, the possibility is discussed of using the obtained results for short-term forecasting as additional information along with known precursors.</p>\",\"PeriodicalId\":602,\"journal\":{\"name\":\"Izvestiya, Physics of the Solid Earth\",\"volume\":\"60 5\",\"pages\":\"879 - 890\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Izvestiya, Physics of the Solid Earth\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1069351324700800\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya, Physics of the Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S1069351324700800","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

以前对 X 级太阳耀斑对地震活动的影响进行的数值研究表明,电离层吸收太阳耀斑的 X 射线辐射可引起高达 100 nT 的地磁场脉动,并相应地在地壳断层中产生密度高达 10-6 A/m2 的碲电流,这与人工脉冲源在地壳中产生的电流密度相当,并导致帕米尔高原和北天山地区发生微弱地震。为了验证这些数值结果,我们分析了 50 个最强的 X 级耀斑(1997-2023 年)对全球地震活动和仅位于地球受照部分的地震准备区可能产生的影响。通过叠加历时的方法确定,与太阳耀斑发生前的同期相比,太阳耀斑发生后 10 天内 M≥4.5 的地震数量有所增加,特别是在太阳系下点周围半径为 5000 公里的区域(耀斑等级 X5 的地震发生率高达 68%)。对苏门答腊-安达曼强震(M=9.1,2004 年 12 月 26 日)的余震活动分析表明,在 X10.1 级太阳耀斑(2005 年 1 月 20 日)发生后,M 级≥2.5 的余震次数增加了 17 倍以上,延迟时间为 7-8 天。此外,在达菲尔德地震(M=7.1,2010 年 9 月 3 日,新西兰)后发生的 X2.3 级和 M3.64 级太阳耀斑也表明,在余震区所在的太阳系下点区域,可能引起了波特希尔斯断层的三次强烈余震(M6.3、M5.2 和 M5.9),其延迟时间同样为 6 天,而波特希尔斯断层在导电性和方向上对外部电磁影响最为敏感。考虑到 G.A. Sobolev 提出的基于触发效应的地震预报概念,讨论了将所获结果作为已知前兆的补充信息用于短期预报的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Electromagnetic Trigger Effects in the Ionosphere–Atmosphere–Lithosphere System and Their Possible Use for Short-Term Earthquake Forecasting

Electromagnetic Trigger Effects in the Ionosphere–Atmosphere–Lithosphere System and Their Possible Use for Short-Term Earthquake Forecasting

Previously conducted numerical studies of the influence of class X solar flares on seismic activity have shown that the absorption of X-ray radiation from a solar flare in the ionosphere can cause pulsations of the geomagnetic field up to 100 nT and the corresponding generation of telluric currents in faults in the Earth’s crust with a density of up to 10–6 A/m2, which is comparable to the current density created in the Earth’s crust by artificial pulse sources and leading to the initiation of weak earthquakes in the Pamirs and Northern Tien Shan. To verify these numerical results, an analysis was conducted of the possible impact of the 50 strongest class X flares (1997–2023) on both global seismic activity and earthquake-preparation zones located only on the illuminated part of the globe. The method of superimposing epochs has established an increase in number of earthquakes M ≥ 4.5 within 10 days after a solar flare, especially in the area with a radius of 5000 km around the subsolar point (up to 68% for flare class >X5), compared to the same period before it. Analysis of aftershock activity of the strong Sumatra–Andaman earthquake (M = 9.1, December 26, 2004) showed that the number of aftershocks with magnitude M ≥ 2.5 increased more than 17 times after the X10.1 class solar flare (January 20, 2005) with a delay of 7–8 days. In addition, it has been shown that solar flares of class X2.3 and M3.64, which occurred after the Darfield earthquake (M = 7.1, September 3, 2010, New Zealand), in the area of subsolar points of which the aftershock zone was located, probably caused three strong aftershocks (M6.3, M5.2, and M5.9) with the same delay of 6 days on the Port Hills fault, which is the most sensitive to external electromagnetic influences in terms of its electrical conductivity and orientation. Taking into account the concept of earthquake forecasting based on trigger effects proposed by G.A. Sobolev, the possibility is discussed of using the obtained results for short-term forecasting as additional information along with known precursors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Izvestiya, Physics of the Solid Earth
Izvestiya, Physics of the Solid Earth 地学-地球化学与地球物理
CiteScore
1.60
自引率
30.00%
发文量
60
审稿时长
6-12 weeks
期刊介绍: Izvestiya, Physics of the Solid Earth is an international peer reviewed journal that publishes results of original theoretical and experimental research in relevant areas of the physics of the Earth''s interior and applied geophysics. The journal welcomes manuscripts from all countries in the English or Russian language.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信