q 移位多项式的 Borel 特殊值

Q2 Mathematics
M. Tejuswini, N. Shilpa
{"title":"q 移位多项式的 Borel 特殊值","authors":"M. Tejuswini,&nbsp;N. Shilpa","doi":"10.1007/s11565-024-00570-0","DOIUrl":null,"url":null,"abstract":"<div><p>This paper deals with the extension of Hayman Conjecture to q-shift differential polynomials generated by meromorphic functions. We prove that the differential polynomials assumes every finite value infinitely often when sharing two Borel exceptional Values with appropriate conditions. Few examples are given to prove that the conditions are inevitable.</p></div>","PeriodicalId":35009,"journal":{"name":"Annali dell''Universita di Ferrara","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Borel exceptional values of q-shift polynomials\",\"authors\":\"M. Tejuswini,&nbsp;N. Shilpa\",\"doi\":\"10.1007/s11565-024-00570-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper deals with the extension of Hayman Conjecture to q-shift differential polynomials generated by meromorphic functions. We prove that the differential polynomials assumes every finite value infinitely often when sharing two Borel exceptional Values with appropriate conditions. Few examples are given to prove that the conditions are inevitable.</p></div>\",\"PeriodicalId\":35009,\"journal\":{\"name\":\"Annali dell''Universita di Ferrara\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annali dell''Universita di Ferrara\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11565-024-00570-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annali dell''Universita di Ferrara","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s11565-024-00570-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文论述海曼猜想向由分形函数产生的 q 移微分多项式的扩展。我们证明了微分多项式在共享两个具有适当条件的 Borel 异常值时,会无限次地承担每个有限值。我们举了几个例子来证明这些条件是不可避免的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Borel exceptional values of q-shift polynomials

This paper deals with the extension of Hayman Conjecture to q-shift differential polynomials generated by meromorphic functions. We prove that the differential polynomials assumes every finite value infinitely often when sharing two Borel exceptional Values with appropriate conditions. Few examples are given to prove that the conditions are inevitable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annali dell''Universita di Ferrara
Annali dell''Universita di Ferrara Mathematics-Mathematics (all)
CiteScore
1.70
自引率
0.00%
发文量
71
期刊介绍: Annali dell''Università di Ferrara is a general mathematical journal publishing high quality papers in all aspects of pure and applied mathematics. After a quick preliminary examination, potentially acceptable contributions will be judged by appropriate international referees. Original research papers are preferred, but well-written surveys on important subjects are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信