Shengxin Zhuang, John Tanner, Yusen Wu, Du Huynh, Wei Liu, Xavier Cadet, Nicolas Fontaine, Philippe Charton, Cedric Damour, Frederic Cadet, Jingbo Wang
{"title":"使用量子支持向量机进行非溶血性肽分类","authors":"Shengxin Zhuang, John Tanner, Yusen Wu, Du Huynh, Wei Liu, Xavier Cadet, Nicolas Fontaine, Philippe Charton, Cedric Damour, Frederic Cadet, Jingbo Wang","doi":"10.1007/s11128-024-04540-5","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum machine learning (QML) is one of the most promising applications of quantum computation. Despite the theoretical advantages, it is still unclear exactly what kind of problems QML techniques can be used for, given the current limitation of noisy intermediate-scale quantum devices. In this work, we apply the well-studied quantum support vector machine (QSVM), a powerful QML model, to a binary classification task which classifies peptides as either <i>hemolytic</i> or <i>non-hemolytic</i>. Using three peptide datasets, we apply and contrast the performance of the QSVM with a number of popular classical SVMs, out of which the QSVM performs best overall. The contributions of this work include: (i) the first application of the QSVM to this specific peptide classification task and (ii) empirical results showing that the QSVM is capable of outperforming many (and possibly all) classical SVMs on this classification task. This foundational work provides insight into possible applications of QML in computational biology and may facilitate safer therapeutic developments by improving our ability to identify hemolytic properties in peptides. \n</p></div>","PeriodicalId":746,"journal":{"name":"Quantum Information Processing","volume":"23 11","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11128-024-04540-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Non-hemolytic peptide classification using a quantum support vector machine\",\"authors\":\"Shengxin Zhuang, John Tanner, Yusen Wu, Du Huynh, Wei Liu, Xavier Cadet, Nicolas Fontaine, Philippe Charton, Cedric Damour, Frederic Cadet, Jingbo Wang\",\"doi\":\"10.1007/s11128-024-04540-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Quantum machine learning (QML) is one of the most promising applications of quantum computation. Despite the theoretical advantages, it is still unclear exactly what kind of problems QML techniques can be used for, given the current limitation of noisy intermediate-scale quantum devices. In this work, we apply the well-studied quantum support vector machine (QSVM), a powerful QML model, to a binary classification task which classifies peptides as either <i>hemolytic</i> or <i>non-hemolytic</i>. Using three peptide datasets, we apply and contrast the performance of the QSVM with a number of popular classical SVMs, out of which the QSVM performs best overall. The contributions of this work include: (i) the first application of the QSVM to this specific peptide classification task and (ii) empirical results showing that the QSVM is capable of outperforming many (and possibly all) classical SVMs on this classification task. This foundational work provides insight into possible applications of QML in computational biology and may facilitate safer therapeutic developments by improving our ability to identify hemolytic properties in peptides. \\n</p></div>\",\"PeriodicalId\":746,\"journal\":{\"name\":\"Quantum Information Processing\",\"volume\":\"23 11\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11128-024-04540-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Information Processing\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11128-024-04540-5\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Information Processing","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11128-024-04540-5","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
Non-hemolytic peptide classification using a quantum support vector machine
Quantum machine learning (QML) is one of the most promising applications of quantum computation. Despite the theoretical advantages, it is still unclear exactly what kind of problems QML techniques can be used for, given the current limitation of noisy intermediate-scale quantum devices. In this work, we apply the well-studied quantum support vector machine (QSVM), a powerful QML model, to a binary classification task which classifies peptides as either hemolytic or non-hemolytic. Using three peptide datasets, we apply and contrast the performance of the QSVM with a number of popular classical SVMs, out of which the QSVM performs best overall. The contributions of this work include: (i) the first application of the QSVM to this specific peptide classification task and (ii) empirical results showing that the QSVM is capable of outperforming many (and possibly all) classical SVMs on this classification task. This foundational work provides insight into possible applications of QML in computational biology and may facilitate safer therapeutic developments by improving our ability to identify hemolytic properties in peptides.
期刊介绍:
Quantum Information Processing is a high-impact, international journal publishing cutting-edge experimental and theoretical research in all areas of Quantum Information Science. Topics of interest include quantum cryptography and communications, entanglement and discord, quantum algorithms, quantum error correction and fault tolerance, quantum computer science, quantum imaging and sensing, and experimental platforms for quantum information. Quantum Information Processing supports and inspires research by providing a comprehensive peer review process, and broadcasting high quality results in a range of formats. These include original papers, letters, broadly focused perspectives, comprehensive review articles, book reviews, and special topical issues. The journal is particularly interested in papers detailing and demonstrating quantum information protocols for cryptography, communications, computation, and sensing.