Abdul Manan;Syed Maaz Shahid;SungKyung Kim;Sungoh Kwon
{"title":"在 5G HetNets 中利用流量分流实现负载平衡以增强 QoS","authors":"Abdul Manan;Syed Maaz Shahid;SungKyung Kim;Sungoh Kwon","doi":"10.1109/TNSE.2024.3482365","DOIUrl":null,"url":null,"abstract":"In heterogeneous networks (HetNets), high user density and random small cell deployment often result in uneven User Equipment (UE) distributions among cells. This can lead to excessive resource usage in some cells and a degradation of Quality of Service (QoS) for users, even while resources in other cells remain underutilized. To address this challenge, we propose a load-balancing algorithm for 5G HetNets that employs traffic splitting for dual connectivity (DC) users. By enabling traffic splitting, DC allows UEs to receive data from both macro and small cells, thereby enhancing network performance in terms of load balancing and QoS improvement. To prevent cell overloading, we formulate the problem of minimizing load variance across 5G HetNet cells using traffic splitting. We derive a theoretical expression to determine the optimal split ratio by considering the cell load conditions. The proposed algorithm dynamically adjusts the data traffic split for DC users based on the optimal split ratio and, if necessary, offloads edge users from overloaded macro cells to underloaded macro cells to achieve uniform network load distribution. Simulation results demonstrate that the proposed algorithm achieves more even load distribution than other load balancing algorithms and increases network throughput and the number of QoS-satisfied users.","PeriodicalId":54229,"journal":{"name":"IEEE Transactions on Network Science and Engineering","volume":"11 6","pages":"6272-6284"},"PeriodicalIF":6.7000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Load Balancing With Traffic Splitting for QoS Enhancement in 5G HetNets\",\"authors\":\"Abdul Manan;Syed Maaz Shahid;SungKyung Kim;Sungoh Kwon\",\"doi\":\"10.1109/TNSE.2024.3482365\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In heterogeneous networks (HetNets), high user density and random small cell deployment often result in uneven User Equipment (UE) distributions among cells. This can lead to excessive resource usage in some cells and a degradation of Quality of Service (QoS) for users, even while resources in other cells remain underutilized. To address this challenge, we propose a load-balancing algorithm for 5G HetNets that employs traffic splitting for dual connectivity (DC) users. By enabling traffic splitting, DC allows UEs to receive data from both macro and small cells, thereby enhancing network performance in terms of load balancing and QoS improvement. To prevent cell overloading, we formulate the problem of minimizing load variance across 5G HetNet cells using traffic splitting. We derive a theoretical expression to determine the optimal split ratio by considering the cell load conditions. The proposed algorithm dynamically adjusts the data traffic split for DC users based on the optimal split ratio and, if necessary, offloads edge users from overloaded macro cells to underloaded macro cells to achieve uniform network load distribution. Simulation results demonstrate that the proposed algorithm achieves more even load distribution than other load balancing algorithms and increases network throughput and the number of QoS-satisfied users.\",\"PeriodicalId\":54229,\"journal\":{\"name\":\"IEEE Transactions on Network Science and Engineering\",\"volume\":\"11 6\",\"pages\":\"6272-6284\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Network Science and Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10723743/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10723743/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Load Balancing With Traffic Splitting for QoS Enhancement in 5G HetNets
In heterogeneous networks (HetNets), high user density and random small cell deployment often result in uneven User Equipment (UE) distributions among cells. This can lead to excessive resource usage in some cells and a degradation of Quality of Service (QoS) for users, even while resources in other cells remain underutilized. To address this challenge, we propose a load-balancing algorithm for 5G HetNets that employs traffic splitting for dual connectivity (DC) users. By enabling traffic splitting, DC allows UEs to receive data from both macro and small cells, thereby enhancing network performance in terms of load balancing and QoS improvement. To prevent cell overloading, we formulate the problem of minimizing load variance across 5G HetNet cells using traffic splitting. We derive a theoretical expression to determine the optimal split ratio by considering the cell load conditions. The proposed algorithm dynamically adjusts the data traffic split for DC users based on the optimal split ratio and, if necessary, offloads edge users from overloaded macro cells to underloaded macro cells to achieve uniform network load distribution. Simulation results demonstrate that the proposed algorithm achieves more even load distribution than other load balancing algorithms and increases network throughput and the number of QoS-satisfied users.
期刊介绍:
The proposed journal, called the IEEE Transactions on Network Science and Engineering (TNSE), is committed to timely publishing of peer-reviewed technical articles that deal with the theory and applications of network science and the interconnections among the elements in a system that form a network. In particular, the IEEE Transactions on Network Science and Engineering publishes articles on understanding, prediction, and control of structures and behaviors of networks at the fundamental level. The types of networks covered include physical or engineered networks, information networks, biological networks, semantic networks, economic networks, social networks, and ecological networks. Aimed at discovering common principles that govern network structures, network functionalities and behaviors of networks, the journal seeks articles on understanding, prediction, and control of structures and behaviors of networks. Another trans-disciplinary focus of the IEEE Transactions on Network Science and Engineering is the interactions between and co-evolution of different genres of networks.