小世界加权复杂网络中耦合波动阻尼振荡器的同步恢复能力

IF 5.3 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Ruoqi Zhang, Lifeng Lin, Huiqi Wang
{"title":"小世界加权复杂网络中耦合波动阻尼振荡器的同步恢复能力","authors":"Ruoqi Zhang, Lifeng Lin, Huiqi Wang","doi":"10.1016/j.chaos.2024.115751","DOIUrl":null,"url":null,"abstract":"The mechanisms of synergy in complex networks have garnered significant attention across scientific disciplines. In this paper, we present a model of coupled oscillators with damping fluctuations within a small-world weighted complex network. We analyze the system’s asymptotic synchronization to derive conditions for asymptotic stability and evaluate the steady-state response. Our numerical simulations highlight the substantial impact of network weight heterogeneity and scale on asymptotic synchronization. We also examine asymptotic synchronization resilience under various removal strategies, revealing that increased noise intensity and lower switching rates reduce resilience. Notably, the removal of strong links poses the greatest vulnerability, while weak links have minimal impact. Interestingly, enhancing weight heterogeneity and scale can improve resilience in certain cases. Our results further show that heterogeneity accelerates synchronization speed, indicating a non-monotonic relationship with network scale. Ultimately, we confirm our theoretical findings and reveal intriguing generalized stochastic resonance (GSR) phenomena.","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"71 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synchronization resilience of coupled fluctuating-damping oscillators in small-world weighted complex networks\",\"authors\":\"Ruoqi Zhang, Lifeng Lin, Huiqi Wang\",\"doi\":\"10.1016/j.chaos.2024.115751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The mechanisms of synergy in complex networks have garnered significant attention across scientific disciplines. In this paper, we present a model of coupled oscillators with damping fluctuations within a small-world weighted complex network. We analyze the system’s asymptotic synchronization to derive conditions for asymptotic stability and evaluate the steady-state response. Our numerical simulations highlight the substantial impact of network weight heterogeneity and scale on asymptotic synchronization. We also examine asymptotic synchronization resilience under various removal strategies, revealing that increased noise intensity and lower switching rates reduce resilience. Notably, the removal of strong links poses the greatest vulnerability, while weak links have minimal impact. Interestingly, enhancing weight heterogeneity and scale can improve resilience in certain cases. Our results further show that heterogeneity accelerates synchronization speed, indicating a non-monotonic relationship with network scale. Ultimately, we confirm our theoretical findings and reveal intriguing generalized stochastic resonance (GSR) phenomena.\",\"PeriodicalId\":9764,\"journal\":{\"name\":\"Chaos Solitons & Fractals\",\"volume\":\"71 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chaos Solitons & Fractals\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chaos.2024.115751\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.chaos.2024.115751","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

复杂网络中的协同机制已引起各科学学科的极大关注。在本文中,我们提出了一个在小世界加权复杂网络中具有阻尼波动的耦合振荡器模型。我们分析了系统的渐近同步性,推导出渐近稳定性的条件,并评估了稳态响应。我们的数值模拟凸显了网络权重异质性和规模对渐近同步的重大影响。我们还研究了各种移除策略下的渐进同步恢复力,发现噪声强度的增加和开关率的降低会降低恢复力。值得注意的是,强链接的移除造成了最大的脆弱性,而弱链接的影响则微乎其微。有趣的是,在某些情况下,增强权重异质性和规模可以提高恢复能力。我们的研究结果进一步表明,异质性会加快同步速度,这表明网络规模与异质性之间存在非单调关系。最终,我们证实了我们的理论发现,并揭示了有趣的广义随机共振(GSR)现象。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synchronization resilience of coupled fluctuating-damping oscillators in small-world weighted complex networks
The mechanisms of synergy in complex networks have garnered significant attention across scientific disciplines. In this paper, we present a model of coupled oscillators with damping fluctuations within a small-world weighted complex network. We analyze the system’s asymptotic synchronization to derive conditions for asymptotic stability and evaluate the steady-state response. Our numerical simulations highlight the substantial impact of network weight heterogeneity and scale on asymptotic synchronization. We also examine asymptotic synchronization resilience under various removal strategies, revealing that increased noise intensity and lower switching rates reduce resilience. Notably, the removal of strong links poses the greatest vulnerability, while weak links have minimal impact. Interestingly, enhancing weight heterogeneity and scale can improve resilience in certain cases. Our results further show that heterogeneity accelerates synchronization speed, indicating a non-monotonic relationship with network scale. Ultimately, we confirm our theoretical findings and reveal intriguing generalized stochastic resonance (GSR) phenomena.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信