Wei-Dong Liu, Han Xu, Chong-Yang Li, La-Sheng Long, Lansun Zheng, Xiang-Jian Kong
{"title":"镧系钛氧团簇 Eu₂Ti₇ 和 Sm₂Ti₇ 的磁光响应和发光特性","authors":"Wei-Dong Liu, Han Xu, Chong-Yang Li, La-Sheng Long, Lansun Zheng, Xiang-Jian Kong","doi":"10.1039/d4qi02645d","DOIUrl":null,"url":null,"abstract":"The study of magneto-optical effects based on the f-f emission and absorption of lanthanide ions has attracted considerable interest. In this work, we present a series of isostructural lanthanide-titanium-oxo clusters (LTOCs) Ln2Ti7 (Ln = La, Sm, Eu) using 3,5-di-tert-butylbenzoic acid as the ligand. A detailed comparison of the luminescence properties of Sm₂Ti₇ and Eu₂Ti₇ shows that Eu₂Ti₇ displays superior luminescence intensity, higher color purity red light, longer lifetime, and significantly higher quantum yield. These properties, along with its high stability in solution, make Eu₂Ti₇ an excellent candidate for magnetic circularly polarized luminescence (MCPL) studies. Under an external magnetic field, Eu₂Ti₇ exhibited strong MCPL signals, with the maximum |gMCPL| value being 0.04 T-1 from the 5D0→7F4 transition. In contrast, the weaker luminescence of Sm₂Ti₇ rendered MCPL analysis ineffective; however, its strong near-infrared absorption allowed for magnetic circular dichroism (MCD) studies. The MCD spectra of Sm₂Ti₇ revealed significant signals corresponding to f-f transitions in the 900-1600 nm range, with the maximum |gMCD| value observed at 1102 nm. This work provides valuable insights into the magneto-optical properties of Ln-based clusters, emphasizing the role of energy-level analysis for further research into their potential applications in magneto-optical devices.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":"253 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magneto-Optical Response and Luminescence Properties of Lanthanide-Titanium-Oxo Clusters Eu₂Ti₇ and Sm₂Ti₇\",\"authors\":\"Wei-Dong Liu, Han Xu, Chong-Yang Li, La-Sheng Long, Lansun Zheng, Xiang-Jian Kong\",\"doi\":\"10.1039/d4qi02645d\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of magneto-optical effects based on the f-f emission and absorption of lanthanide ions has attracted considerable interest. In this work, we present a series of isostructural lanthanide-titanium-oxo clusters (LTOCs) Ln2Ti7 (Ln = La, Sm, Eu) using 3,5-di-tert-butylbenzoic acid as the ligand. A detailed comparison of the luminescence properties of Sm₂Ti₇ and Eu₂Ti₇ shows that Eu₂Ti₇ displays superior luminescence intensity, higher color purity red light, longer lifetime, and significantly higher quantum yield. These properties, along with its high stability in solution, make Eu₂Ti₇ an excellent candidate for magnetic circularly polarized luminescence (MCPL) studies. Under an external magnetic field, Eu₂Ti₇ exhibited strong MCPL signals, with the maximum |gMCPL| value being 0.04 T-1 from the 5D0→7F4 transition. In contrast, the weaker luminescence of Sm₂Ti₇ rendered MCPL analysis ineffective; however, its strong near-infrared absorption allowed for magnetic circular dichroism (MCD) studies. The MCD spectra of Sm₂Ti₇ revealed significant signals corresponding to f-f transitions in the 900-1600 nm range, with the maximum |gMCD| value observed at 1102 nm. This work provides valuable insights into the magneto-optical properties of Ln-based clusters, emphasizing the role of energy-level analysis for further research into their potential applications in magneto-optical devices.\",\"PeriodicalId\":79,\"journal\":{\"name\":\"Inorganic Chemistry Frontiers\",\"volume\":\"253 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry Frontiers\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1039/d4qi02645d\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qi02645d","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
Magneto-Optical Response and Luminescence Properties of Lanthanide-Titanium-Oxo Clusters Eu₂Ti₇ and Sm₂Ti₇
The study of magneto-optical effects based on the f-f emission and absorption of lanthanide ions has attracted considerable interest. In this work, we present a series of isostructural lanthanide-titanium-oxo clusters (LTOCs) Ln2Ti7 (Ln = La, Sm, Eu) using 3,5-di-tert-butylbenzoic acid as the ligand. A detailed comparison of the luminescence properties of Sm₂Ti₇ and Eu₂Ti₇ shows that Eu₂Ti₇ displays superior luminescence intensity, higher color purity red light, longer lifetime, and significantly higher quantum yield. These properties, along with its high stability in solution, make Eu₂Ti₇ an excellent candidate for magnetic circularly polarized luminescence (MCPL) studies. Under an external magnetic field, Eu₂Ti₇ exhibited strong MCPL signals, with the maximum |gMCPL| value being 0.04 T-1 from the 5D0→7F4 transition. In contrast, the weaker luminescence of Sm₂Ti₇ rendered MCPL analysis ineffective; however, its strong near-infrared absorption allowed for magnetic circular dichroism (MCD) studies. The MCD spectra of Sm₂Ti₇ revealed significant signals corresponding to f-f transitions in the 900-1600 nm range, with the maximum |gMCD| value observed at 1102 nm. This work provides valuable insights into the magneto-optical properties of Ln-based clusters, emphasizing the role of energy-level analysis for further research into their potential applications in magneto-optical devices.