超越绝热极限的时变马尔可夫主方程

IF 5.1 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Quantum Pub Date : 2024-11-21 DOI:10.22331/q-2024-11-21-1534
Giovanni Di Meglio, Martin B. Plenio, Susana F. Huelga
{"title":"超越绝热极限的时变马尔可夫主方程","authors":"Giovanni Di Meglio, Martin B. Plenio, Susana F. Huelga","doi":"10.22331/q-2024-11-21-1534","DOIUrl":null,"url":null,"abstract":"We derive a Markovian master equation that models the evolution of systems subject to driving and control fields. Our approach combines time rescaling and weak-coupling limits for the system-environment interaction with a secular approximation. The derivation makes use of the adiabatic time-evolution operator in a manner that allows for the efficient description of strong driving, while recovering the well-known adiabatic master equation in the appropriate limit. To illustrate the effectiveness of our approach, firstly we apply it to the paradigmatic case of a two-level (qubit) system subject to a form of periodic driving that remains unsolvable using a Floquet representation and lastly we extend this scenario to the situation of two interacting qubits, the first driven while the second one directly in contact with the environment. We demonstrate the reliability and broad scope of our approach by benchmarking the solutions of the derived reduced time evolution against numerically exact simulations using tensor networks. Our results provide rigorous conditions that must be satisfied by phenomenological master equations for driven systems that do not rely on first-principles derivations.","PeriodicalId":20807,"journal":{"name":"Quantum","volume":"11 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Time dependent Markovian master equation beyond the adiabatic limit\",\"authors\":\"Giovanni Di Meglio, Martin B. Plenio, Susana F. Huelga\",\"doi\":\"10.22331/q-2024-11-21-1534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We derive a Markovian master equation that models the evolution of systems subject to driving and control fields. Our approach combines time rescaling and weak-coupling limits for the system-environment interaction with a secular approximation. The derivation makes use of the adiabatic time-evolution operator in a manner that allows for the efficient description of strong driving, while recovering the well-known adiabatic master equation in the appropriate limit. To illustrate the effectiveness of our approach, firstly we apply it to the paradigmatic case of a two-level (qubit) system subject to a form of periodic driving that remains unsolvable using a Floquet representation and lastly we extend this scenario to the situation of two interacting qubits, the first driven while the second one directly in contact with the environment. We demonstrate the reliability and broad scope of our approach by benchmarking the solutions of the derived reduced time evolution against numerically exact simulations using tensor networks. Our results provide rigorous conditions that must be satisfied by phenomenological master equations for driven systems that do not rely on first-principles derivations.\",\"PeriodicalId\":20807,\"journal\":{\"name\":\"Quantum\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.22331/q-2024-11-21-1534\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.22331/q-2024-11-21-1534","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们推导了一个马尔可夫主方程,该方程模拟了受驱动场和控制场影响的系统的演化过程。我们的方法结合了系统与环境相互作用的时间重定标和弱耦合限制以及一种世俗近似。推导过程利用了绝热时间演化算子,从而可以有效地描述强驱动,同时在适当的极限中恢复著名的绝热主方程。为了说明我们的方法的有效性,我们首先将其应用于一个两级(量子比特)系统的典型案例,该系统受到一种周期性驱动形式的影响,而这种驱动形式使用 Floquet 表示法仍然无法解决;最后,我们将这种情况扩展到两个相互作用的量子比特的情况,第一个量子比特受到驱动,而第二个量子比特直接与环境接触。我们通过使用张量网络进行数值精确模拟,对推导出的缩减时间演化解进行基准测试,证明了我们方法的可靠性和广泛性。我们的结果提供了不依赖第一原理推导的驱动系统现象学主方程必须满足的严格条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time dependent Markovian master equation beyond the adiabatic limit
We derive a Markovian master equation that models the evolution of systems subject to driving and control fields. Our approach combines time rescaling and weak-coupling limits for the system-environment interaction with a secular approximation. The derivation makes use of the adiabatic time-evolution operator in a manner that allows for the efficient description of strong driving, while recovering the well-known adiabatic master equation in the appropriate limit. To illustrate the effectiveness of our approach, firstly we apply it to the paradigmatic case of a two-level (qubit) system subject to a form of periodic driving that remains unsolvable using a Floquet representation and lastly we extend this scenario to the situation of two interacting qubits, the first driven while the second one directly in contact with the environment. We demonstrate the reliability and broad scope of our approach by benchmarking the solutions of the derived reduced time evolution against numerically exact simulations using tensor networks. Our results provide rigorous conditions that must be satisfied by phenomenological master equations for driven systems that do not rely on first-principles derivations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum
Quantum Physics and Astronomy-Physics and Astronomy (miscellaneous)
CiteScore
9.20
自引率
10.90%
发文量
241
审稿时长
16 weeks
期刊介绍: Quantum is an open-access peer-reviewed journal for quantum science and related fields. Quantum is non-profit and community-run: an effort by researchers and for researchers to make science more open and publishing more transparent and efficient.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信