具有受控分支活动的随机树的阿米巴蒙特卡洛算法:高效的试验移动生成和通用动力学。

IF 2.2 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
Pieter H W van der Hoek, Angelo Rosa, Ralf Everaers
{"title":"具有受控分支活动的随机树的阿米巴蒙特卡洛算法:高效的试验移动生成和通用动力学。","authors":"Pieter H W van der Hoek, Angelo Rosa, Ralf Everaers","doi":"10.1103/PhysRevE.110.045312","DOIUrl":null,"url":null,"abstract":"<p><p>The reptation Monte Carlo algorithm is a simple, physically motivated and efficient method for equilibrating semidilute solutions of linear polymers. Here, we propose two simple generalizations for the analog Amoeba algorithm for randomly branching chains, which allow us to efficiently deal with random trees with controlled branching activity. We analyze the rich relaxation dynamics of Amoeba algorithms and demonstrate the existence of an unexpected scaling regime for the tree relaxation. Our results suggest that the equilibration time for Amoeba algorithms scales in general like N^{2}〈n_{lin}〉^{Δ}, where N denotes the number of tree nodes, 〈n_{lin}〉 the mean number of linear segments the trees are composed of, and Δ≃0.4.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"110 4-2","pages":"045312"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amoeba Monte Carlo algorithms for random trees with controlled branching activity: Efficient trial move generation and universal dynamics.\",\"authors\":\"Pieter H W van der Hoek, Angelo Rosa, Ralf Everaers\",\"doi\":\"10.1103/PhysRevE.110.045312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The reptation Monte Carlo algorithm is a simple, physically motivated and efficient method for equilibrating semidilute solutions of linear polymers. Here, we propose two simple generalizations for the analog Amoeba algorithm for randomly branching chains, which allow us to efficiently deal with random trees with controlled branching activity. We analyze the rich relaxation dynamics of Amoeba algorithms and demonstrate the existence of an unexpected scaling regime for the tree relaxation. Our results suggest that the equilibration time for Amoeba algorithms scales in general like N^{2}〈n_{lin}〉^{Δ}, where N denotes the number of tree nodes, 〈n_{lin}〉 the mean number of linear segments the trees are composed of, and Δ≃0.4.</p>\",\"PeriodicalId\":48698,\"journal\":{\"name\":\"Physical Review E\",\"volume\":\"110 4-2\",\"pages\":\"045312\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevE.110.045312\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.045312","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

爬行蒙特卡洛算法是一种简单、基于物理原理的高效方法,用于平衡线性聚合物的半稀释溶液。在这里,我们提出了两个简单的概括,用于随机分支链的类似阿米巴算法,使我们能够有效地处理具有可控分支活动的随机树。我们分析了阿米巴算法丰富的松弛动力学,并证明了树松弛存在意想不到的缩放机制。我们的结果表明,阿米巴算法的平衡时间一般按 N^{2}〈n_{lin}〉^{Δ}的方式缩放,其中 N 表示树节点的数量,〈n_{lin}〉表示树由线性段组成的平均数量,Δ≃0.4。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Amoeba Monte Carlo algorithms for random trees with controlled branching activity: Efficient trial move generation and universal dynamics.

The reptation Monte Carlo algorithm is a simple, physically motivated and efficient method for equilibrating semidilute solutions of linear polymers. Here, we propose two simple generalizations for the analog Amoeba algorithm for randomly branching chains, which allow us to efficiently deal with random trees with controlled branching activity. We analyze the rich relaxation dynamics of Amoeba algorithms and demonstrate the existence of an unexpected scaling regime for the tree relaxation. Our results suggest that the equilibration time for Amoeba algorithms scales in general like N^{2}〈n_{lin}〉^{Δ}, where N denotes the number of tree nodes, 〈n_{lin}〉 the mean number of linear segments the trees are composed of, and Δ≃0.4.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review E
Physical Review E PHYSICS, FLUIDS & PLASMASPHYSICS, MATHEMAT-PHYSICS, MATHEMATICAL
CiteScore
4.50
自引率
16.70%
发文量
2110
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信