Luhui Ning, Xiaoting Yu, Xue Zhang, Wei Liu, Ke Chen, Ning Zheng, Mingcheng Yang, Peng Liu
{"title":"在胶体晶体中扩散的探针之间有效吸引力的电位效应。","authors":"Luhui Ning, Xiaoting Yu, Xue Zhang, Wei Liu, Ke Chen, Ning Zheng, Mingcheng Yang, Peng Liu","doi":"10.1103/PhysRevE.110.044607","DOIUrl":null,"url":null,"abstract":"<p><p>Considering the significant influence of interparticle potentials on traditional depletion forces, we here employ computer simulations to investigate how varying potentials between particles affect the effective interaction of probes diffusing freely in a 2D colloidal crystal. Our results reveal that attractive potentials between the background particles and probes significantly modify the interprobe effective interactions, whereas long-range repulsive tails among the background particles have minimal impact. Furthermore, we observe contrary temperature dependencies of the effective force for soft and stiff repulsions between the background particles. These findings provide deeper insights into how direct interparticle potentials shape entropic-dominated effective forces mediated by colloidal crystals.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"110 4-1","pages":"044607"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential effects on effective attraction between probes diffusing in colloidal crystal.\",\"authors\":\"Luhui Ning, Xiaoting Yu, Xue Zhang, Wei Liu, Ke Chen, Ning Zheng, Mingcheng Yang, Peng Liu\",\"doi\":\"10.1103/PhysRevE.110.044607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Considering the significant influence of interparticle potentials on traditional depletion forces, we here employ computer simulations to investigate how varying potentials between particles affect the effective interaction of probes diffusing freely in a 2D colloidal crystal. Our results reveal that attractive potentials between the background particles and probes significantly modify the interprobe effective interactions, whereas long-range repulsive tails among the background particles have minimal impact. Furthermore, we observe contrary temperature dependencies of the effective force for soft and stiff repulsions between the background particles. These findings provide deeper insights into how direct interparticle potentials shape entropic-dominated effective forces mediated by colloidal crystals.</p>\",\"PeriodicalId\":48698,\"journal\":{\"name\":\"Physical Review E\",\"volume\":\"110 4-1\",\"pages\":\"044607\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevE.110.044607\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.044607","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Potential effects on effective attraction between probes diffusing in colloidal crystal.
Considering the significant influence of interparticle potentials on traditional depletion forces, we here employ computer simulations to investigate how varying potentials between particles affect the effective interaction of probes diffusing freely in a 2D colloidal crystal. Our results reveal that attractive potentials between the background particles and probes significantly modify the interprobe effective interactions, whereas long-range repulsive tails among the background particles have minimal impact. Furthermore, we observe contrary temperature dependencies of the effective force for soft and stiff repulsions between the background particles. These findings provide deeper insights into how direct interparticle potentials shape entropic-dominated effective forces mediated by colloidal crystals.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.