ACSL4 在术后辅助 TACE 治疗的 HCC 中的预后作用:对治疗反应的影响和机理认识。

IF 11.4 1区 医学 Q1 ONCOLOGY
Ji Feng, Jin-Lian Bin, Xi-Wen Liao, Yong Wu, Yue Tang, Pei-Zhi Lu, Guang-Zhi Zhu, Qian-Ru Cui, Yock Young Dan, Guo-Huan Yang, Li-Xin Li, Jing-Huan Deng, Tao Peng, Shing Chuan Hooi, Jing Zhou, Guo-Dong Lu
{"title":"ACSL4 在术后辅助 TACE 治疗的 HCC 中的预后作用:对治疗反应的影响和机理认识。","authors":"Ji Feng, Jin-Lian Bin, Xi-Wen Liao, Yong Wu, Yue Tang, Pei-Zhi Lu, Guang-Zhi Zhu, Qian-Ru Cui, Yock Young Dan, Guo-Huan Yang, Li-Xin Li, Jing-Huan Deng, Tao Peng, Shing Chuan Hooi, Jing Zhou, Guo-Dong Lu","doi":"10.1186/s13046-024-03222-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The response of hepatocellular carcinoma (HCC) to transarterial chemoembolization (TACE) treatment and its underlying mechanisms remain elusive. This study investigates the role of enzymes involved in fatty acid activation, specifically Acyl-CoA synthetase long chain 4 (ACSL4), in HCC patients treated with postoperative adjuvant TACE (PA-TACE) and in nutrient-deprived HCC cells.</p><p><strong>Methods: </strong>We examined the expression of ACSL4 and its family members in HCC clinical samples and cell lines. The clinical significance of ACSL4, particularly regarding the prognosis of patients treated with PA-TACE, was assessed using two independent HCC cohorts. We further explored the role of ACSL4 in glucose starvation-induced cell death in HCC cells and xenograft mouse models.</p><p><strong>Results: </strong>Among the family members, ACSL4 is the most up-regulated enzyme, associated with poor survival in HCC patients, particularly in post-recurrent TACE-treated patients in a Singapore cohort. ACSL4 is essential for HCC cell survival in response to glucose starvation, rather than to hypoxia or to the combination of hypoxia with doxorubicin or cisplatin. ACSL4-mediated arachidonic acid (AA) metabolism supports mitochondrial β-oxidation and energy production. CCAAT/enhancer binding protein α (CEBPA) transcriptionally regulates ACSL4 by binding 3 motifs (-623 to -613, -1197 to -1187 and -1745 to -1735) of ACSL4 upstream promoter region, enhancing its pro-survival effects. Furthermore, canagliflozin (Cana), a clinical-approved drug for type 2 diabetes, mimics glucose starvation and inhibits the growth of ACSL4-low xenograft tumors. Moreover, high ACSL4 or CEBPA expressions correlate with increased recurrence susceptibility after PA-TACE in the China-Guangxi HCC cohort.</p><p><strong>Conclusions: </strong>The CEBPA-ACSL4 pathway is critical in protecting HCC cells from glucose starvation-induced cell death, suggesting that ACSL4 and CEBPA could serve as valuable prognostic indicators and potential therapeutic targets in the context of PA-TACE treatment for HCC.</p>","PeriodicalId":50199,"journal":{"name":"Journal of Experimental & Clinical Cancer Research","volume":"43 1","pages":"306"},"PeriodicalIF":11.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575417/pdf/","citationCount":"0","resultStr":"{\"title\":\"The prognostic role of ACSL4 in postoperative adjuvant TACE-treated HCC: implications for therapeutic response and mechanistic insights.\",\"authors\":\"Ji Feng, Jin-Lian Bin, Xi-Wen Liao, Yong Wu, Yue Tang, Pei-Zhi Lu, Guang-Zhi Zhu, Qian-Ru Cui, Yock Young Dan, Guo-Huan Yang, Li-Xin Li, Jing-Huan Deng, Tao Peng, Shing Chuan Hooi, Jing Zhou, Guo-Dong Lu\",\"doi\":\"10.1186/s13046-024-03222-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The response of hepatocellular carcinoma (HCC) to transarterial chemoembolization (TACE) treatment and its underlying mechanisms remain elusive. This study investigates the role of enzymes involved in fatty acid activation, specifically Acyl-CoA synthetase long chain 4 (ACSL4), in HCC patients treated with postoperative adjuvant TACE (PA-TACE) and in nutrient-deprived HCC cells.</p><p><strong>Methods: </strong>We examined the expression of ACSL4 and its family members in HCC clinical samples and cell lines. The clinical significance of ACSL4, particularly regarding the prognosis of patients treated with PA-TACE, was assessed using two independent HCC cohorts. We further explored the role of ACSL4 in glucose starvation-induced cell death in HCC cells and xenograft mouse models.</p><p><strong>Results: </strong>Among the family members, ACSL4 is the most up-regulated enzyme, associated with poor survival in HCC patients, particularly in post-recurrent TACE-treated patients in a Singapore cohort. ACSL4 is essential for HCC cell survival in response to glucose starvation, rather than to hypoxia or to the combination of hypoxia with doxorubicin or cisplatin. ACSL4-mediated arachidonic acid (AA) metabolism supports mitochondrial β-oxidation and energy production. CCAAT/enhancer binding protein α (CEBPA) transcriptionally regulates ACSL4 by binding 3 motifs (-623 to -613, -1197 to -1187 and -1745 to -1735) of ACSL4 upstream promoter region, enhancing its pro-survival effects. Furthermore, canagliflozin (Cana), a clinical-approved drug for type 2 diabetes, mimics glucose starvation and inhibits the growth of ACSL4-low xenograft tumors. Moreover, high ACSL4 or CEBPA expressions correlate with increased recurrence susceptibility after PA-TACE in the China-Guangxi HCC cohort.</p><p><strong>Conclusions: </strong>The CEBPA-ACSL4 pathway is critical in protecting HCC cells from glucose starvation-induced cell death, suggesting that ACSL4 and CEBPA could serve as valuable prognostic indicators and potential therapeutic targets in the context of PA-TACE treatment for HCC.</p>\",\"PeriodicalId\":50199,\"journal\":{\"name\":\"Journal of Experimental & Clinical Cancer Research\",\"volume\":\"43 1\",\"pages\":\"306\"},\"PeriodicalIF\":11.4000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575417/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental & Clinical Cancer Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13046-024-03222-5\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental & Clinical Cancer Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13046-024-03222-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:肝细胞癌(HCC)对经动脉化疗栓塞(TACE)治疗的反应及其内在机制仍不明确。本研究探讨了参与脂肪酸活化的酶,特别是酰基-CoA合成酶长链4(ACSL4),在接受术后辅助TACE(PA-TACE)治疗的HCC患者和营养缺乏的HCC细胞中的作用:我们检测了ACSL4及其家族成员在HCC临床样本和细胞系中的表达。方法:我们检测了 ACSL4 及其家族成员在 HCC 临床样本和细胞系中的表达情况,并利用两个独立的 HCC 队列评估了 ACSL4 的临床意义,尤其是与接受 PA-TACE 治疗的患者的预后有关的意义。我们进一步探讨了 ACSL4 在葡萄糖饥饿诱导的 HCC 细胞和异种移植小鼠模型中的作用:结果:在家族成员中,ACSL4是上调幅度最大的酶,与HCC患者的不良生存率有关,尤其是在新加坡队列中接受TACE治疗后的患者中。ACSL4是HCC细胞在葡萄糖饥饿条件下存活的必要条件,而不是在缺氧或缺氧与多柔比星或顺铂结合的条件下。ACSL4介导的花生四烯酸(AA)代谢支持线粒体β氧化和能量生成。CCAAT/增强子结合蛋白α(CEBPA)通过结合ACSL4上游启动子区的3个基序(-623至-613、-1197至-1187和-1745至-1735)转录调控ACSL4,增强其促生存作用。此外,临床批准的 2 型糖尿病药物卡格列净(Cana)可模拟葡萄糖饥饿,抑制低 ACSL4 异种移植肿瘤的生长。此外,在中国-广西HCC队列中,ACSL4或CEBPA高表达与PA-TACE后复发易感性增加相关:结论:CEBPA-ACSL4通路在保护HCC细胞免受葡萄糖饥饿诱导的细胞死亡方面至关重要,这表明ACSL4和CEBPA可作为有价值的预后指标和PA-TACE治疗HCC的潜在治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The prognostic role of ACSL4 in postoperative adjuvant TACE-treated HCC: implications for therapeutic response and mechanistic insights.

Background: The response of hepatocellular carcinoma (HCC) to transarterial chemoembolization (TACE) treatment and its underlying mechanisms remain elusive. This study investigates the role of enzymes involved in fatty acid activation, specifically Acyl-CoA synthetase long chain 4 (ACSL4), in HCC patients treated with postoperative adjuvant TACE (PA-TACE) and in nutrient-deprived HCC cells.

Methods: We examined the expression of ACSL4 and its family members in HCC clinical samples and cell lines. The clinical significance of ACSL4, particularly regarding the prognosis of patients treated with PA-TACE, was assessed using two independent HCC cohorts. We further explored the role of ACSL4 in glucose starvation-induced cell death in HCC cells and xenograft mouse models.

Results: Among the family members, ACSL4 is the most up-regulated enzyme, associated with poor survival in HCC patients, particularly in post-recurrent TACE-treated patients in a Singapore cohort. ACSL4 is essential for HCC cell survival in response to glucose starvation, rather than to hypoxia or to the combination of hypoxia with doxorubicin or cisplatin. ACSL4-mediated arachidonic acid (AA) metabolism supports mitochondrial β-oxidation and energy production. CCAAT/enhancer binding protein α (CEBPA) transcriptionally regulates ACSL4 by binding 3 motifs (-623 to -613, -1197 to -1187 and -1745 to -1735) of ACSL4 upstream promoter region, enhancing its pro-survival effects. Furthermore, canagliflozin (Cana), a clinical-approved drug for type 2 diabetes, mimics glucose starvation and inhibits the growth of ACSL4-low xenograft tumors. Moreover, high ACSL4 or CEBPA expressions correlate with increased recurrence susceptibility after PA-TACE in the China-Guangxi HCC cohort.

Conclusions: The CEBPA-ACSL4 pathway is critical in protecting HCC cells from glucose starvation-induced cell death, suggesting that ACSL4 and CEBPA could serve as valuable prognostic indicators and potential therapeutic targets in the context of PA-TACE treatment for HCC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
18.20
自引率
1.80%
发文量
333
审稿时长
1 months
期刊介绍: The Journal of Experimental & Clinical Cancer Research is an esteemed peer-reviewed publication that focuses on cancer research, encompassing everything from fundamental discoveries to practical applications. We welcome submissions that showcase groundbreaking advancements in the field of cancer research, especially those that bridge the gap between laboratory findings and clinical implementation. Our goal is to foster a deeper understanding of cancer, improve prevention and detection strategies, facilitate accurate diagnosis, and enhance treatment options. We are particularly interested in manuscripts that shed light on the mechanisms behind the development and progression of cancer, including metastasis. Additionally, we encourage submissions that explore molecular alterations or biomarkers that can help predict the efficacy of different treatments or identify drug resistance. Translational research related to targeted therapies, personalized medicine, tumor immunotherapy, and innovative approaches applicable to clinical investigations are also of great interest to us. We provide a platform for the dissemination of large-scale molecular characterizations of human tumors and encourage researchers to share their insights, discoveries, and methodologies with the wider scientific community. By publishing high-quality research articles, reviews, and commentaries, the Journal of Experimental & Clinical Cancer Research strives to contribute to the continuous improvement of cancer care and make a meaningful impact on patients' lives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信