{"title":"自持直流放电开始时的稳定性理论,并应用于负电晕。","authors":"P G C Almeida, G V Naidis, M S Benilov","doi":"10.1103/PhysRevE.110.045201","DOIUrl":null,"url":null,"abstract":"<p><p>The inception of self-sustaining dc discharges is analyzed in terms of the bifurcation theory. The existence of a nonphysical solution with negative ion and electron densities must be taken into account in order to identify the bifurcation type. The bifurcation is transcritical for positive and negative corona discharges and, in more general terms, it is expected to be transcritical for all discharge configurations except for the parallel-plate discharge, where the bifurcation is pitchfork. General trends of the bifurcation theory suggest that the corona discharges should be stable immediately after the inception. This conclusion is tested numerically for negative coronas in atmospheric-pressure air in coaxial-cylinder geometry. Two independent approaches have been used: (1) study of linear stability against infinitesimal perturbations with the use of an eigenvalue solver, and (2) following the time development of finite perturbations with the use of a time-dependent solver. The numerical results agree with each other and with the theory. In particular, it is shown that the negative corona is stable, i.e., pulseless, immediately after the ignition. The loss of stability occurs through growth of harmonic perturbations, which subsequently evolve into Trichel pulses, and this happens on the ascending branch of the current-voltage characteristic, contrary to the popular concept of negative differential resistance. Results of the work are of theoretical interest and offer further insights into physics of negative corona discharges.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"110 4-2","pages":"045201"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theory of stability of self-sustaining dc discharges at inception with application to negative corona.\",\"authors\":\"P G C Almeida, G V Naidis, M S Benilov\",\"doi\":\"10.1103/PhysRevE.110.045201\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The inception of self-sustaining dc discharges is analyzed in terms of the bifurcation theory. The existence of a nonphysical solution with negative ion and electron densities must be taken into account in order to identify the bifurcation type. The bifurcation is transcritical for positive and negative corona discharges and, in more general terms, it is expected to be transcritical for all discharge configurations except for the parallel-plate discharge, where the bifurcation is pitchfork. General trends of the bifurcation theory suggest that the corona discharges should be stable immediately after the inception. This conclusion is tested numerically for negative coronas in atmospheric-pressure air in coaxial-cylinder geometry. Two independent approaches have been used: (1) study of linear stability against infinitesimal perturbations with the use of an eigenvalue solver, and (2) following the time development of finite perturbations with the use of a time-dependent solver. The numerical results agree with each other and with the theory. In particular, it is shown that the negative corona is stable, i.e., pulseless, immediately after the ignition. The loss of stability occurs through growth of harmonic perturbations, which subsequently evolve into Trichel pulses, and this happens on the ascending branch of the current-voltage characteristic, contrary to the popular concept of negative differential resistance. Results of the work are of theoretical interest and offer further insights into physics of negative corona discharges.</p>\",\"PeriodicalId\":48698,\"journal\":{\"name\":\"Physical Review E\",\"volume\":\"110 4-2\",\"pages\":\"045201\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevE.110.045201\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.045201","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Theory of stability of self-sustaining dc discharges at inception with application to negative corona.
The inception of self-sustaining dc discharges is analyzed in terms of the bifurcation theory. The existence of a nonphysical solution with negative ion and electron densities must be taken into account in order to identify the bifurcation type. The bifurcation is transcritical for positive and negative corona discharges and, in more general terms, it is expected to be transcritical for all discharge configurations except for the parallel-plate discharge, where the bifurcation is pitchfork. General trends of the bifurcation theory suggest that the corona discharges should be stable immediately after the inception. This conclusion is tested numerically for negative coronas in atmospheric-pressure air in coaxial-cylinder geometry. Two independent approaches have been used: (1) study of linear stability against infinitesimal perturbations with the use of an eigenvalue solver, and (2) following the time development of finite perturbations with the use of a time-dependent solver. The numerical results agree with each other and with the theory. In particular, it is shown that the negative corona is stable, i.e., pulseless, immediately after the ignition. The loss of stability occurs through growth of harmonic perturbations, which subsequently evolve into Trichel pulses, and this happens on the ascending branch of the current-voltage characteristic, contrary to the popular concept of negative differential resistance. Results of the work are of theoretical interest and offer further insights into physics of negative corona discharges.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.