{"title":"细胞随机内化纳米粒子的模型。","authors":"Sergei Fedotov, Dmitri V Alexandrov","doi":"10.1103/PhysRevE.110.044101","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a stochastic model for the internalization of nanoparticles by cells formulating cellular uptake as a compound Poisson process with a random probability of success. This is an alternative approach to the one presented by Rees et al. [Nat. Commun. 10, 2341 (2019)2041-172310.1038/s41467-018-07882-8] who explained overdispersion in nanoparticle uptake and associated negative binomial distribution by considering a Poisson distribution for particle arrival and a gamma-distributed cell area. In our stochastic model, the formation of new pits is represented by the Poisson process, whereas the capturing process and the population heterogeneity are described by a random Bernoulli process with a beta-distributed probability of success. The random probability of success generates ensemble-averaged conditional transition probabilities that increase with the number of newly formed pits (self-reinforcement). As a result, an ensemble-averaged nanoparticle uptake can be represented as a Polya process. We derive an explicit formula for the distribution of the random number of pits containing nanoparticles. In the limit of the fast nucleation and low probability of nanoparticle capture, we find the negative binomial distribution.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"110 4-1","pages":"044101"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model for random internalization of nanoparticles by cells.\",\"authors\":\"Sergei Fedotov, Dmitri V Alexandrov\",\"doi\":\"10.1103/PhysRevE.110.044101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose a stochastic model for the internalization of nanoparticles by cells formulating cellular uptake as a compound Poisson process with a random probability of success. This is an alternative approach to the one presented by Rees et al. [Nat. Commun. 10, 2341 (2019)2041-172310.1038/s41467-018-07882-8] who explained overdispersion in nanoparticle uptake and associated negative binomial distribution by considering a Poisson distribution for particle arrival and a gamma-distributed cell area. In our stochastic model, the formation of new pits is represented by the Poisson process, whereas the capturing process and the population heterogeneity are described by a random Bernoulli process with a beta-distributed probability of success. The random probability of success generates ensemble-averaged conditional transition probabilities that increase with the number of newly formed pits (self-reinforcement). As a result, an ensemble-averaged nanoparticle uptake can be represented as a Polya process. We derive an explicit formula for the distribution of the random number of pits containing nanoparticles. In the limit of the fast nucleation and low probability of nanoparticle capture, we find the negative binomial distribution.</p>\",\"PeriodicalId\":48698,\"journal\":{\"name\":\"Physical Review E\",\"volume\":\"110 4-1\",\"pages\":\"044101\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevE.110.044101\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.044101","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Model for random internalization of nanoparticles by cells.
We propose a stochastic model for the internalization of nanoparticles by cells formulating cellular uptake as a compound Poisson process with a random probability of success. This is an alternative approach to the one presented by Rees et al. [Nat. Commun. 10, 2341 (2019)2041-172310.1038/s41467-018-07882-8] who explained overdispersion in nanoparticle uptake and associated negative binomial distribution by considering a Poisson distribution for particle arrival and a gamma-distributed cell area. In our stochastic model, the formation of new pits is represented by the Poisson process, whereas the capturing process and the population heterogeneity are described by a random Bernoulli process with a beta-distributed probability of success. The random probability of success generates ensemble-averaged conditional transition probabilities that increase with the number of newly formed pits (self-reinforcement). As a result, an ensemble-averaged nanoparticle uptake can be represented as a Polya process. We derive an explicit formula for the distribution of the random number of pits containing nanoparticles. In the limit of the fast nucleation and low probability of nanoparticle capture, we find the negative binomial distribution.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.