细胞随机内化纳米粒子的模型。

IF 2.2 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
Sergei Fedotov, Dmitri V Alexandrov
{"title":"细胞随机内化纳米粒子的模型。","authors":"Sergei Fedotov, Dmitri V Alexandrov","doi":"10.1103/PhysRevE.110.044101","DOIUrl":null,"url":null,"abstract":"<p><p>We propose a stochastic model for the internalization of nanoparticles by cells formulating cellular uptake as a compound Poisson process with a random probability of success. This is an alternative approach to the one presented by Rees et al. [Nat. Commun. 10, 2341 (2019)2041-172310.1038/s41467-018-07882-8] who explained overdispersion in nanoparticle uptake and associated negative binomial distribution by considering a Poisson distribution for particle arrival and a gamma-distributed cell area. In our stochastic model, the formation of new pits is represented by the Poisson process, whereas the capturing process and the population heterogeneity are described by a random Bernoulli process with a beta-distributed probability of success. The random probability of success generates ensemble-averaged conditional transition probabilities that increase with the number of newly formed pits (self-reinforcement). As a result, an ensemble-averaged nanoparticle uptake can be represented as a Polya process. We derive an explicit formula for the distribution of the random number of pits containing nanoparticles. In the limit of the fast nucleation and low probability of nanoparticle capture, we find the negative binomial distribution.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"110 4-1","pages":"044101"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model for random internalization of nanoparticles by cells.\",\"authors\":\"Sergei Fedotov, Dmitri V Alexandrov\",\"doi\":\"10.1103/PhysRevE.110.044101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We propose a stochastic model for the internalization of nanoparticles by cells formulating cellular uptake as a compound Poisson process with a random probability of success. This is an alternative approach to the one presented by Rees et al. [Nat. Commun. 10, 2341 (2019)2041-172310.1038/s41467-018-07882-8] who explained overdispersion in nanoparticle uptake and associated negative binomial distribution by considering a Poisson distribution for particle arrival and a gamma-distributed cell area. In our stochastic model, the formation of new pits is represented by the Poisson process, whereas the capturing process and the population heterogeneity are described by a random Bernoulli process with a beta-distributed probability of success. The random probability of success generates ensemble-averaged conditional transition probabilities that increase with the number of newly formed pits (self-reinforcement). As a result, an ensemble-averaged nanoparticle uptake can be represented as a Polya process. We derive an explicit formula for the distribution of the random number of pits containing nanoparticles. In the limit of the fast nucleation and low probability of nanoparticle capture, we find the negative binomial distribution.</p>\",\"PeriodicalId\":48698,\"journal\":{\"name\":\"Physical Review E\",\"volume\":\"110 4-1\",\"pages\":\"044101\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevE.110.044101\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.044101","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种细胞内化纳米粒子的随机模型,将细胞摄取表述为具有随机成功概率的复合泊松过程。这是 Rees 等人提出的另一种方法[Nat. Commun. 10, 2341 (2019)2041-172310.1038/s41467-018-07882-8],他们通过考虑粒子到达的泊松分布和伽马分布的细胞面积来解释纳米粒子吸收的过度分散性和相关的负二项分布。在我们的随机模型中,新凹坑的形成由泊松过程表示,而捕获过程和种群异质性由随机伯努利过程描述,成功概率为贝塔分布。随机成功概率产生的集合平均条件转换概率会随着新形成坑洞数量的增加而增加(自我强化)。因此,集合平均纳米粒子吸收可以表示为一个波利亚过程。我们推导出了含有纳米粒子的凹坑随机数量分布的明确公式。在快速成核和纳米粒子捕获概率较低的情况下,我们发现了负二项分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model for random internalization of nanoparticles by cells.

We propose a stochastic model for the internalization of nanoparticles by cells formulating cellular uptake as a compound Poisson process with a random probability of success. This is an alternative approach to the one presented by Rees et al. [Nat. Commun. 10, 2341 (2019)2041-172310.1038/s41467-018-07882-8] who explained overdispersion in nanoparticle uptake and associated negative binomial distribution by considering a Poisson distribution for particle arrival and a gamma-distributed cell area. In our stochastic model, the formation of new pits is represented by the Poisson process, whereas the capturing process and the population heterogeneity are described by a random Bernoulli process with a beta-distributed probability of success. The random probability of success generates ensemble-averaged conditional transition probabilities that increase with the number of newly formed pits (self-reinforcement). As a result, an ensemble-averaged nanoparticle uptake can be represented as a Polya process. We derive an explicit formula for the distribution of the random number of pits containing nanoparticles. In the limit of the fast nucleation and low probability of nanoparticle capture, we find the negative binomial distribution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review E
Physical Review E PHYSICS, FLUIDS & PLASMASPHYSICS, MATHEMAT-PHYSICS, MATHEMATICAL
CiteScore
4.50
自引率
16.70%
发文量
2110
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信