{"title":"神经调节对耦合仓本振荡器网络的同步性和网络重组的影响","authors":"Sinan Aktay, Leonard M Sander, Michal Zochowski","doi":"10.1103/PhysRevE.110.044401","DOIUrl":null,"url":null,"abstract":"<p><p>Neuromodulatory processes in the brain can critically change signal processing on a cellular level, leading to dramatic changes in network level reorganization. Here, we use coupled nonidentical Kuramoto oscillators to investigate how changes in the shape of phase response curves from Type 1 to Type 2, mediated by varying ACh levels, coupled with activity-dependent plasticity may alter network reorganization. We first show that, when plasticity is absent, the Type 1 networks with symmetric adjacency matrix, as expected, exhibit asynchronous dynamics with oscillators of the highest natural frequency robustly evolving faster in terms of their phase dynamics. However, interestingly, Type 1 networks with an asymmetric connectivity matrix can produce stable synchrony (so-called splay states) with complex phase relationships. At the same time, Type 2 networks synchronize independent of the symmetry of their connectivity matrix, with oscillators locked so that those with higher natural frequency have a constant phase lead as compared to those with lower natural frequency. This relationship establishes a robust mapping between the frequency and oscillators' phases in the network, leading to structure and frequency mapping when plasticity is present. Finally, we show that biologically realistic, phase-locking dependent, connection plasticity naturally produces splay states in Type 1 networks that do not display the structure-frequency reorganization observed in synchronized Type II networks. These results indicate that the formation of splay states in the brain could be a common phenomenon.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"110 4-1","pages":"044401"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neuromodulatory effects on synchrony and network reorganization in networks of coupled Kuramoto oscillators.\",\"authors\":\"Sinan Aktay, Leonard M Sander, Michal Zochowski\",\"doi\":\"10.1103/PhysRevE.110.044401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuromodulatory processes in the brain can critically change signal processing on a cellular level, leading to dramatic changes in network level reorganization. Here, we use coupled nonidentical Kuramoto oscillators to investigate how changes in the shape of phase response curves from Type 1 to Type 2, mediated by varying ACh levels, coupled with activity-dependent plasticity may alter network reorganization. We first show that, when plasticity is absent, the Type 1 networks with symmetric adjacency matrix, as expected, exhibit asynchronous dynamics with oscillators of the highest natural frequency robustly evolving faster in terms of their phase dynamics. However, interestingly, Type 1 networks with an asymmetric connectivity matrix can produce stable synchrony (so-called splay states) with complex phase relationships. At the same time, Type 2 networks synchronize independent of the symmetry of their connectivity matrix, with oscillators locked so that those with higher natural frequency have a constant phase lead as compared to those with lower natural frequency. This relationship establishes a robust mapping between the frequency and oscillators' phases in the network, leading to structure and frequency mapping when plasticity is present. Finally, we show that biologically realistic, phase-locking dependent, connection plasticity naturally produces splay states in Type 1 networks that do not display the structure-frequency reorganization observed in synchronized Type II networks. These results indicate that the formation of splay states in the brain could be a common phenomenon.</p>\",\"PeriodicalId\":48698,\"journal\":{\"name\":\"Physical Review E\",\"volume\":\"110 4-1\",\"pages\":\"044401\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevE.110.044401\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.044401","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Neuromodulatory effects on synchrony and network reorganization in networks of coupled Kuramoto oscillators.
Neuromodulatory processes in the brain can critically change signal processing on a cellular level, leading to dramatic changes in network level reorganization. Here, we use coupled nonidentical Kuramoto oscillators to investigate how changes in the shape of phase response curves from Type 1 to Type 2, mediated by varying ACh levels, coupled with activity-dependent plasticity may alter network reorganization. We first show that, when plasticity is absent, the Type 1 networks with symmetric adjacency matrix, as expected, exhibit asynchronous dynamics with oscillators of the highest natural frequency robustly evolving faster in terms of their phase dynamics. However, interestingly, Type 1 networks with an asymmetric connectivity matrix can produce stable synchrony (so-called splay states) with complex phase relationships. At the same time, Type 2 networks synchronize independent of the symmetry of their connectivity matrix, with oscillators locked so that those with higher natural frequency have a constant phase lead as compared to those with lower natural frequency. This relationship establishes a robust mapping between the frequency and oscillators' phases in the network, leading to structure and frequency mapping when plasticity is present. Finally, we show that biologically realistic, phase-locking dependent, connection plasticity naturally produces splay states in Type 1 networks that do not display the structure-frequency reorganization observed in synchronized Type II networks. These results indicate that the formation of splay states in the brain could be a common phenomenon.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.