高度可压缩流离散速度玻尔兹曼方法中的双分布函数模型探测:粒子按需实现。

IF 2.2 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
S A Hosseini, A Bhadauria, I V Karlin
{"title":"高度可压缩流离散速度玻尔兹曼方法中的双分布函数模型探测:粒子按需实现。","authors":"S A Hosseini, A Bhadauria, I V Karlin","doi":"10.1103/PhysRevE.110.045313","DOIUrl":null,"url":null,"abstract":"<p><p>The double distribution function approach is an efficient route toward an extension of kinetic solvers to compressible flows. With a number of realizations available, an overview and comparative study in the context of high-speed compressible flows is presented. We discuss the different variants of the energy partition, analyses of hydrodynamic limits, and a numerical study of accuracy and performance with the particles on demand realization. Out of three considered energy partition strategies, it is shown that the nontranslational energy split requires a higher-order quadrature for proper recovery of the Navier-Stokes-Fourier equations. The internal energy split, on the other hand, while recovering the correct hydrodynamic limit with fourth-order quadrature, comes with a nonlocal-both in space and time-source term that contributes to higher computational cost and memory overhead. Based on our analysis, the total energy split demonstrates the optimal overall performance.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"110 4-2","pages":"045313"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing double-distribution-function models in discrete-velocity Boltzmann methods for highly compressible flows: Particles-on-demand realization.\",\"authors\":\"S A Hosseini, A Bhadauria, I V Karlin\",\"doi\":\"10.1103/PhysRevE.110.045313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The double distribution function approach is an efficient route toward an extension of kinetic solvers to compressible flows. With a number of realizations available, an overview and comparative study in the context of high-speed compressible flows is presented. We discuss the different variants of the energy partition, analyses of hydrodynamic limits, and a numerical study of accuracy and performance with the particles on demand realization. Out of three considered energy partition strategies, it is shown that the nontranslational energy split requires a higher-order quadrature for proper recovery of the Navier-Stokes-Fourier equations. The internal energy split, on the other hand, while recovering the correct hydrodynamic limit with fourth-order quadrature, comes with a nonlocal-both in space and time-source term that contributes to higher computational cost and memory overhead. Based on our analysis, the total energy split demonstrates the optimal overall performance.</p>\",\"PeriodicalId\":48698,\"journal\":{\"name\":\"Physical Review E\",\"volume\":\"110 4-2\",\"pages\":\"045313\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevE.110.045313\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.045313","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

双重分布函数方法是将动力学求解器扩展到可压缩流的有效途径。本文介绍了在高速可压缩流背景下的一些实现方法,并对其进行了概述和比较研究。我们讨论了能量分区的不同变体、流体力学限制分析以及按需粒子实现的精度和性能数值研究。研究表明,在所考虑的三种能量分配策略中,非平移能量分配需要更高阶的正交来正确恢复纳维-斯托克斯-傅里叶方程。另一方面,内部能量分割虽然用四阶正交恢复了正确的流体力学极限,但却带来了空间和时间上的非局部源项,导致了更高的计算成本和内存开销。根据我们的分析,总能量拆分展示了最佳的整体性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probing double-distribution-function models in discrete-velocity Boltzmann methods for highly compressible flows: Particles-on-demand realization.

The double distribution function approach is an efficient route toward an extension of kinetic solvers to compressible flows. With a number of realizations available, an overview and comparative study in the context of high-speed compressible flows is presented. We discuss the different variants of the energy partition, analyses of hydrodynamic limits, and a numerical study of accuracy and performance with the particles on demand realization. Out of three considered energy partition strategies, it is shown that the nontranslational energy split requires a higher-order quadrature for proper recovery of the Navier-Stokes-Fourier equations. The internal energy split, on the other hand, while recovering the correct hydrodynamic limit with fourth-order quadrature, comes with a nonlocal-both in space and time-source term that contributes to higher computational cost and memory overhead. Based on our analysis, the total energy split demonstrates the optimal overall performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review E
Physical Review E PHYSICS, FLUIDS & PLASMASPHYSICS, MATHEMAT-PHYSICS, MATHEMATICAL
CiteScore
4.50
自引率
16.70%
发文量
2110
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信