Mingzhong Lu, Sheng Fang, Zongzheng Zhou, Youjin Deng
{"title":"完整图和高斯定点渐近线在高于上临界维度的渗滤的有限大小缩放中的相互作用。","authors":"Mingzhong Lu, Sheng Fang, Zongzheng Zhou, Youjin Deng","doi":"10.1103/PhysRevE.110.044140","DOIUrl":null,"url":null,"abstract":"<p><p>For statistical mechanical systems with continuous phase transitions, there are two closely related but subtly different mean-field treatments, the Gaussian fixed point (GFP) in the renormalization group framework and the Landau mean-field theory or the complete-graph (CG) asymptotics. By large-scale Monte Carlo simulations, we systematically study the interplay of the GFP and CG effects to the finite-size scaling of percolation above the upper critical dimension d_{c}=6 with periodic and cylindrical boundary conditions. Our results suggest that, with periodic boundaries, the unwrapped correlation length scales as L^{d/6} at the critical point, diverging faster than L above d_{c}. As a consequence, the scaling behaviors of macroscopic quantities with respect to the linear system size L follow the CG asymptotics. The distance-dependent properties, such as the short-distance behavior of the two-point correlation function and the Fourier transformed quantities with nonzero modes, are still controlled by the GFP. With cylindrical boundaries, due to the interplay of the GFP and CG effects, the correlation length along the axial direction of the cylinder scales as ξ_{L}∼L^{(d-1)/5} within the critical window of size O(L^{-2(d-1)/5}), distinct from periodic boundary. A field-theoretical calculation for deriving the scaling of ξ_{L} is also presented. Moreover, the one-point surface correlation function along the axial direction of the cylinder is observed to scale as τ^{(1-d)/2} when the distance τ is short, but then enter a plateau of order L^{-3(d-1)/5} before it decays significantly fast.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"110 4-1","pages":"044140"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interplay of the complete-graph and Gaussian fixed-point asymptotics in finite-size scaling of percolation above the upper critical dimension.\",\"authors\":\"Mingzhong Lu, Sheng Fang, Zongzheng Zhou, Youjin Deng\",\"doi\":\"10.1103/PhysRevE.110.044140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>For statistical mechanical systems with continuous phase transitions, there are two closely related but subtly different mean-field treatments, the Gaussian fixed point (GFP) in the renormalization group framework and the Landau mean-field theory or the complete-graph (CG) asymptotics. By large-scale Monte Carlo simulations, we systematically study the interplay of the GFP and CG effects to the finite-size scaling of percolation above the upper critical dimension d_{c}=6 with periodic and cylindrical boundary conditions. Our results suggest that, with periodic boundaries, the unwrapped correlation length scales as L^{d/6} at the critical point, diverging faster than L above d_{c}. As a consequence, the scaling behaviors of macroscopic quantities with respect to the linear system size L follow the CG asymptotics. The distance-dependent properties, such as the short-distance behavior of the two-point correlation function and the Fourier transformed quantities with nonzero modes, are still controlled by the GFP. With cylindrical boundaries, due to the interplay of the GFP and CG effects, the correlation length along the axial direction of the cylinder scales as ξ_{L}∼L^{(d-1)/5} within the critical window of size O(L^{-2(d-1)/5}), distinct from periodic boundary. A field-theoretical calculation for deriving the scaling of ξ_{L} is also presented. Moreover, the one-point surface correlation function along the axial direction of the cylinder is observed to scale as τ^{(1-d)/2} when the distance τ is short, but then enter a plateau of order L^{-3(d-1)/5} before it decays significantly fast.</p>\",\"PeriodicalId\":48698,\"journal\":{\"name\":\"Physical Review E\",\"volume\":\"110 4-1\",\"pages\":\"044140\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevE.110.044140\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.044140","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Interplay of the complete-graph and Gaussian fixed-point asymptotics in finite-size scaling of percolation above the upper critical dimension.
For statistical mechanical systems with continuous phase transitions, there are two closely related but subtly different mean-field treatments, the Gaussian fixed point (GFP) in the renormalization group framework and the Landau mean-field theory or the complete-graph (CG) asymptotics. By large-scale Monte Carlo simulations, we systematically study the interplay of the GFP and CG effects to the finite-size scaling of percolation above the upper critical dimension d_{c}=6 with periodic and cylindrical boundary conditions. Our results suggest that, with periodic boundaries, the unwrapped correlation length scales as L^{d/6} at the critical point, diverging faster than L above d_{c}. As a consequence, the scaling behaviors of macroscopic quantities with respect to the linear system size L follow the CG asymptotics. The distance-dependent properties, such as the short-distance behavior of the two-point correlation function and the Fourier transformed quantities with nonzero modes, are still controlled by the GFP. With cylindrical boundaries, due to the interplay of the GFP and CG effects, the correlation length along the axial direction of the cylinder scales as ξ_{L}∼L^{(d-1)/5} within the critical window of size O(L^{-2(d-1)/5}), distinct from periodic boundary. A field-theoretical calculation for deriving the scaling of ξ_{L} is also presented. Moreover, the one-point surface correlation function along the axial direction of the cylinder is observed to scale as τ^{(1-d)/2} when the distance τ is short, but then enter a plateau of order L^{-3(d-1)/5} before it decays significantly fast.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.