在易感-传染-易感流行病过程中寻找病人零点。

IF 2.2 3区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS
Robin Persoons, Piet Van Mieghem
{"title":"在易感-传染-易感流行病过程中寻找病人零点。","authors":"Robin Persoons, Piet Van Mieghem","doi":"10.1103/PhysRevE.110.044308","DOIUrl":null,"url":null,"abstract":"<p><p>Finding the source of an epidemic is important, because correct source identification can help to stop a budding epidemic or prevent new ones. We investigate the backward equations of the N-intertwined mean-field approximation susceptible-infectious-susceptible (SIS) process. The backward equations allow us to trace the epidemic back to its source on networks of sizes up to at least N=1500. Additionally, we show that the source of the \"more realistic\" Markovian SIS model cannot feasibly be found, even in a \"best-case scenario,\" where the infinitesimal generator Q, which completely describes the epidemic process and the underlying contact network, is known. The Markovian initial condition s(0), which reveals the epidemic source, can be found analytically when the viral state vector s(t) is known at some time t as s(0)=s(t)e^{-Qt}. However, s(0) can hardly be computed, except for small times t. The numerical errors are largely due to the matrix exponential e^{-Qt}, which is severely ill-behaved.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"110 4-1","pages":"044308"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finding patient zero in susceptible-infectious-susceptible epidemic processes.\",\"authors\":\"Robin Persoons, Piet Van Mieghem\",\"doi\":\"10.1103/PhysRevE.110.044308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Finding the source of an epidemic is important, because correct source identification can help to stop a budding epidemic or prevent new ones. We investigate the backward equations of the N-intertwined mean-field approximation susceptible-infectious-susceptible (SIS) process. The backward equations allow us to trace the epidemic back to its source on networks of sizes up to at least N=1500. Additionally, we show that the source of the \\\"more realistic\\\" Markovian SIS model cannot feasibly be found, even in a \\\"best-case scenario,\\\" where the infinitesimal generator Q, which completely describes the epidemic process and the underlying contact network, is known. The Markovian initial condition s(0), which reveals the epidemic source, can be found analytically when the viral state vector s(t) is known at some time t as s(0)=s(t)e^{-Qt}. However, s(0) can hardly be computed, except for small times t. The numerical errors are largely due to the matrix exponential e^{-Qt}, which is severely ill-behaved.</p>\",\"PeriodicalId\":48698,\"journal\":{\"name\":\"Physical Review E\",\"volume\":\"110 4-1\",\"pages\":\"044308\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevE.110.044308\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.044308","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

找到流行病的源头非常重要,因为正确的源头识别有助于阻止流行病的萌芽或预防新的流行病。我们研究了 N 个交织平均场近似易感-传染-易感(SIS)过程的后向方程。利用后向方程,我们可以在规模至少为 N=1500 的网络上追溯疫情源头。此外,我们还证明,即使在 "最佳情况 "下,即已知完全描述流行病过程和底层接触网络的无穷小发生器 Q,也无法找到 "更现实 "的马尔可夫 SIS 模型的源头。当病毒状态向量 s(t) 在某个时间 t 已知时,可以通过分析找到揭示流行源的马尔可夫初始条件 s(0),即 s(0)=s(t)e^{-Qt}。然而,除了小时间 t 外,s(0) 几乎无法计算。数值误差主要是由于矩阵指数 e^{-Qt} 的严重乖离造成的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finding patient zero in susceptible-infectious-susceptible epidemic processes.

Finding the source of an epidemic is important, because correct source identification can help to stop a budding epidemic or prevent new ones. We investigate the backward equations of the N-intertwined mean-field approximation susceptible-infectious-susceptible (SIS) process. The backward equations allow us to trace the epidemic back to its source on networks of sizes up to at least N=1500. Additionally, we show that the source of the "more realistic" Markovian SIS model cannot feasibly be found, even in a "best-case scenario," where the infinitesimal generator Q, which completely describes the epidemic process and the underlying contact network, is known. The Markovian initial condition s(0), which reveals the epidemic source, can be found analytically when the viral state vector s(t) is known at some time t as s(0)=s(t)e^{-Qt}. However, s(0) can hardly be computed, except for small times t. The numerical errors are largely due to the matrix exponential e^{-Qt}, which is severely ill-behaved.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review E
Physical Review E PHYSICS, FLUIDS & PLASMASPHYSICS, MATHEMAT-PHYSICS, MATHEMATICAL
CiteScore
4.50
自引率
16.70%
发文量
2110
期刊介绍: Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信