{"title":"在非马尔可夫种群动力学中逃离可变状态","authors":"Ohad Vilk, Michael Assaf","doi":"10.1103/PhysRevE.110.044132","DOIUrl":null,"url":null,"abstract":"<p><p>We study the long-time dynamics in non-Markovian single-population stochastic models, where one or more reactions are modeled as a stochastic process with a fat-tailed nonexponential distribution of waiting times, mimicking long-term memory. We focus on three prototypical examples: genetic switching, population establishment, and population extinction, all with nonexponential production rates. The system is studied in two regimes. In the first, the distribution of waiting times has a finite mean. Here, the system approaches a (quasi)stationary steady state at long times, and we develop a general Wentzel-Kramers-Brillouin approach for these non-Markovian systems. We derive explicit results for the mean population size and mean escape time from the metastable state of the stochastic dynamics. In this realm, we reveal that for sufficiently strong memory, a memory-induced (meta)stable state can emerge in the system. In the second regime, the waiting time distribution is assumed to have an infinite mean. Here, for bistable systems we find two distinct scaling regimes, separated by an exponentially long time which may strongly depend on the initial conditions of the system.</p>","PeriodicalId":48698,"journal":{"name":"Physical Review E","volume":"110 4-1","pages":"044132"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Escape from a metastable state in non-Markovian population dynamics.\",\"authors\":\"Ohad Vilk, Michael Assaf\",\"doi\":\"10.1103/PhysRevE.110.044132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We study the long-time dynamics in non-Markovian single-population stochastic models, where one or more reactions are modeled as a stochastic process with a fat-tailed nonexponential distribution of waiting times, mimicking long-term memory. We focus on three prototypical examples: genetic switching, population establishment, and population extinction, all with nonexponential production rates. The system is studied in two regimes. In the first, the distribution of waiting times has a finite mean. Here, the system approaches a (quasi)stationary steady state at long times, and we develop a general Wentzel-Kramers-Brillouin approach for these non-Markovian systems. We derive explicit results for the mean population size and mean escape time from the metastable state of the stochastic dynamics. In this realm, we reveal that for sufficiently strong memory, a memory-induced (meta)stable state can emerge in the system. In the second regime, the waiting time distribution is assumed to have an infinite mean. Here, for bistable systems we find two distinct scaling regimes, separated by an exponentially long time which may strongly depend on the initial conditions of the system.</p>\",\"PeriodicalId\":48698,\"journal\":{\"name\":\"Physical Review E\",\"volume\":\"110 4-1\",\"pages\":\"044132\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review E\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/PhysRevE.110.044132\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review E","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevE.110.044132","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Escape from a metastable state in non-Markovian population dynamics.
We study the long-time dynamics in non-Markovian single-population stochastic models, where one or more reactions are modeled as a stochastic process with a fat-tailed nonexponential distribution of waiting times, mimicking long-term memory. We focus on three prototypical examples: genetic switching, population establishment, and population extinction, all with nonexponential production rates. The system is studied in two regimes. In the first, the distribution of waiting times has a finite mean. Here, the system approaches a (quasi)stationary steady state at long times, and we develop a general Wentzel-Kramers-Brillouin approach for these non-Markovian systems. We derive explicit results for the mean population size and mean escape time from the metastable state of the stochastic dynamics. In this realm, we reveal that for sufficiently strong memory, a memory-induced (meta)stable state can emerge in the system. In the second regime, the waiting time distribution is assumed to have an infinite mean. Here, for bistable systems we find two distinct scaling regimes, separated by an exponentially long time which may strongly depend on the initial conditions of the system.
期刊介绍:
Physical Review E (PRE), broad and interdisciplinary in scope, focuses on collective phenomena of many-body systems, with statistical physics and nonlinear dynamics as the central themes of the journal. Physical Review E publishes recent developments in biological and soft matter physics including granular materials, colloids, complex fluids, liquid crystals, and polymers. The journal covers fluid dynamics and plasma physics and includes sections on computational and interdisciplinary physics, for example, complex networks.